Improved Gas Separation of PEBAX-CSWCNTs Mixed Matrix Membranes

Authors

  • Pouria Abbasszadeh Gamali Nanotechnology and Carbon Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
  • Mohammadreza Rahmani Nanotechnology and Carbon Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
  • Abbass Kazemi Nanotechnology and Carbon Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
  • Mahnaz Pourkhalil Nanotechnology and Carbon Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

DOI:

https://doi.org/10.6000/1929-6037.2017.06.02.3

Keywords:

Mixed matrix membranes (MMMs), Poly(ether-block-amide), Nanofillers, Permselectivity, Gas separation

Abstract

In the present study, mixed matrix membranes (MMMs) were prepared using PEBAX® 3000 as polymer matrix and single-wall carbon nanotubes (SWCNTs) functionalized with carboxyl groups as nanofillers. The effects of the nanofillers on separation of CO2/N2 and CO2/CH4 were investigated. The pristine PEBAX membrane indicated gas selectivity values of 23 and 13 for CO2/N2 and CO2/CH4, respectively. However selectivity of the modified membrane for gas pairs of CO2/N2 and CO2/CH4 improved to the values of 106.4 and 31.3, respectively. In other words, selectivity of modified membranes compared to those of unmodified ones enhanced greatly. The dramatic increase in gas selectivity of the mixed matrix membranes can be attributed to the polar groups of caboxyl-functionalized single-wall carbon nanotubes (CSWCNTs). While CO2 permeability of MMMs increaesd, permeability of nonpolar gases (N2 and CH4) decreased. FTIR spectra depicted that there were inter/intramolecular forces between ether and amide groups of the polymer chains. For PEBAX membrane filled with 10 wt% CSWCNTs, the peaks of C-O-C، N-H, and H-N-C=O functional groups shifted to lower values due to the formation of hydrogen bonds between polar carboxyl groups of CSWCNTs and amide/ether groups of PEBAX copolymer. Relative crystallinity values of the membranes with various CSWCNTs content were calculated using ΔHf data obtained from DSC measurements. Results demonstared that the rise in content of CSWCNTs brought about the decrement in crystallinity values of polyamide segments. The morphology of the membrane containing 10 wt% CSWCNTs was also investigated emplying AFM images, and a suitable compatability and adhere between PEBAX and CSWCNTs was last confirmed.

References

Rahmani M, Kazemi A, Talebnia F. Matrimid mixed matrix membranes for enhanced CO2/CH4 separation. J Polym Eng 2016; 36: 499-511. https://doi.org/10.1515/polyeng-2015-0176

Azizi N, Mohammadi T, Behbahani RM. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 Separation. Chem Eng Res Des 2017; 117: 177-189. https://doi.org/10.1016/j.cherd.2016.10.018

Jusoh N, Yeong YF, Lau KK, Shariff AM. Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide. J Membr Sci 2017; 525: 175-186. https://doi.org/10.1016/j.memsci.2016.10.044

Martin-Gil V, López A, Hrabanek P, Mallada R, Vankelecom IFJ, Fila V. Study of different titanosilicate (TS-1 and ETS-10) as fillers for Mixed Matrix Membranes for CO2/CH4 gas separation applications. J Membr Sci 2017; 523: 24-35. https://doi.org/10.1016/j.memsci.2016.09.041

Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. J Membr Sci 2017; 522: 351-362. https://doi.org/10.1016/j.memsci.2016.09.040

Boroglu MS, Yumru AB. Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Sep Purif Technol 2017; 173: 269-279. https://doi.org/10.1016/j.seppur.2016.09.037

Sun H, Wang T, Xu Y, Gao W, Li P, Niu QJ. Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation. Sep Purif Technol 2017; 177: 327-336. https://doi.org/10.1016/j.seppur.2017.01.015

Rahmani M, Kazemi A, Talebnia F, Gamali PA. Fabrication and characterization of brominated matrimid® 5218 membranes for CO2/CH4 separation: application of response surface methodology (RSM). e-polymers 2016; 6: 481-492. https://doi.org/10.1515/epoly-2016-0140

Hibshman C, Cornelius CJ, Marand E. The gas separation effects of annealing polyimide-organosilicate hybrid membranes. J Membr Sci 2003; 211: 25-40. https://doi.org/10.1016/S0376-7388(02)00306-X

Suzuki T, Yamada Y. Physical and gas transport properties of novel hyperbranched polyimide-silica hybrid membranes. Polym Bull 2005; 53: 139-146. https://doi.org/10.1007/s00289-004-0322-9

Abbasszadeh Gamali P, Kazemi A, Zadmard R, Jalali Anjareghi M, Rezakhani A, Rahighi R, Madani M. Distinguished discriminatory separation of CO2 from its methane-containing gas mixture via PEBAX mixed matrix membrane, Chinese Journal of Chemical Engineering, in press. https://doi.org/10.1016/j.cjche.2017.04.002

Patel NP, Zielinski JM, Samseth J, Spontak RJ. Effects of pressure and nanoparticle functionality on CO2-selective nanocomposites derived from crosslinked poly(ethylene glycol). Macromol Chem Phys 2004; 205: 2409-2419. https://doi.org/10.1002/macp.200400356

Liu L, Chakma A, Feng X. A novel method of preparing ultratin poly(ether block amide) membranes. J Membr Sci 2004; 235: 43-52. https://doi.org/10.1016/j.memsci.2003.12.025

Barbi V, Funari SS, Gehrke R, Scharnagl N, Stribeck N. SAXS and gas transport in poly(ether-block-polyamide) copolymer membranes. Macromolecules 2003; 36: 749-758. https://doi.org/10.1021/ma0213403

Kim JH, Ha SY, Lee YM. Gas permeation of poly(amide-6-bethylene oxide) copolymer. J Membr Sci 2001; 190: 179-193. https://doi.org/10.1016/S0376-7388(01)00444-6

Lin H, Freeman BD. Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 2005; 739: 57-74. https://doi.org/10.1016/j.molstruc.2004.07.045

Yumpolskii Y, Freeman BD. Membrane gas separation. John Wiley & Sons 2010.

Car A, Stropnik C, Yave W, Peinemann K. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Mem Sci 2008; 307: 88-95. https://doi.org/10.1016/j.memsci.2007.09.023

Van Krevelen DW. Properties of polymers: their correlation with chemical structure, their numerical estimation and prediction from additive group contributions. 3rd ed. Elsevier: New York, 1990; p. 875.

Hildebrand J, Scott RL. The Solubility of Nonelectrolytes, 3rd ed., Reinhold, New York 1950.

Hansen CM. Hansen solubility parameter, Handbook, second edition, CRC 2007.

Rahmani M, Kazemi A, Talebnia F, Khanbabaei G. Preparation and characterization of cross-likned matrimid membaranes for CO2/CH4 separation. Polym Sci Ser B 2014; 56: 650-656. https://doi.org/10.1134/S1560090414050108

Dasgupta S, Hammond WB, Goddard WA. Crystal Structures and Properties of Nylon Polymers from Theory. J Am Chem Soc 1996; 118: 12291-12301. https://doi.org/10.1021/ja944125d

Archondouli PS, Kalfoglou NK. Compatibilization and properties of PBT/PU polymeric alloys. Polymer 2001; 42: 3489-3502. https://doi.org/10.1016/S0032-3861(00)00758-8

Hu CB, Ward RS, Schneider NS. A new criterion of phase separation: the effect of diamine chain extenders on the properties of polyurethane ureas. J Appl Polym Sci 1982; 27: 2167-2177. https://doi.org/10.1002/app.1982.070270627

Mayo SL, Olafson BD, Goddard WA. A Generic Force Field for Molecular Simulations. J Phys Chem 1990; 94: 8897-8909. https://doi.org/10.1021/j100389a010

Tutak W, Chhowalla M, Sesti F. The chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell response. Nano Tech 2010; 21: 315102. https://doi.org/10.1088/0957-4484/21/31/315102

Pavia DL, Lampman GM, Kriz GS. Introduction to spectroscopy, Thomson learning 2001.

Magonov SN, Reneker DH. Characterization of polymer surfaces with atomic force microscopy. Annu Rev Mater Sci 1997; 27: 175-222. https://doi.org/10.1146/annurev.matsci.27.1.175

Dasgupta S, Hammond WB, Goddard WA. Crystal Structures and Properties of Nylon Polymers from Theory. J Am Chem Soc 1996; 118: 12291-12301. https://doi.org/10.1021/ja944125d

Corneala LM, Mastenb SJ, Daviesb SHR, Tarabarab VV, Byunb S, Baumann MJ. AFM, SEM and EDS characterization of manganese oxide coated ceramic water filtration membranes. J Membr Sci 2010; 360: 292-302. https://doi.org/10.1016/j.memsci.2010.05.026

Bondar VI, Freeman BD, Pinnau I. Gas transport properties of poly(ether-b-amide; segmented block copolymers. J Polym Sci Part B Polym Phys 2000; 38: 2051-2062. https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D

Gomes D, Nunes SP, Peinemann KV. Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites. J Membr Sci 2005; 246: 13-25. https://doi.org/10.1016/j.memsci.2004.05.015

Li Y, Chung TS. Highly selective sulfonated polyethersulfone (SPES)-basedmembranes with transition metal counterions for hydrogen recovery and nat-ural gas separation. J Membr Sci 2008; 308: 128-135. https://doi.org/10.1016/j.memsci.2007.09.053

Buckingham AD, Disch RL, Dunmur DA. Quadrupole moments of some simple molecules. J Am Chem Soc 1968; 90: 3104-3107. https://doi.org/10.1021/ja01014a023

Downloads

Published

2017-08-04

How to Cite

Abbasszadeh Gamali, P., Rahmani, M., Kazemi, A., & Pourkhalil, M. (2017). Improved Gas Separation of PEBAX-CSWCNTs Mixed Matrix Membranes . Journal of Membrane and Separation Technology, 6(2), 55–70. https://doi.org/10.6000/1929-6037.2017.06.02.3

Issue

Section

Articles