Nanoporous Polyether Sulfone Membrane, Preparation and Characterization: Effect of Porosity and Mean Pore Size on Performance

Authors

  • Sara Salehi Shahrabi Chemistry and Chemical Engineering Research Center of Iran, Tehran, P.O. Box: 14335-186, Iran
  • Hamid Reza Mortaheb Chemistry and Chemical Engineering Research Center of Iran, Tehran, P.O. Box: 14335-186, Iran
  • Jalal Barzin Iran polymer and petrochemical institute, Tehran, P.O. Box: 14965-115, Iran
  • Mohammad Reza Ehsani Chemical Engineering Dep., Isfahan University of Technology, Isfahan 84155, Iran

DOI:

https://doi.org/10.6000/1929-6037.2017.06.02.4

Keywords:

PES membrane, Porosity, Mean pore size, Permeability test, Pervaporation

Abstract

Flat sheet membranes were prepared by phase inversion technique using polyether sulfone (PES) dissolved in dimethylacetamide (DMAc) with and without adding polyvinylpyrrolidone (PVP) or polyethyleneglycol (PEG). The characteristics of the prepared membranes were evaluated using Scanning Electron Microscope (SEM) images, Atomic Force Microscopy (AFM), and Optical Contact Angle (OCA) measurements, and porosity tests. The porosity test and SEM images show that increasing additives to a certain value increases the porosity of the membrane. Also, as the coagulation bath temperature is increased, the porosity of the membrane is increased. The roughness of the membrane is increased by increasing the additive concentration. The analysis of AFM images confirms the nanoporous structure of the prepared membranes, and that the membranes with appropriate pore size distribution can be prepared by the applied method. Permeability tests using single-layer membranes show that the direct relationship between porosity and the flux of pure water or salt solution is dominated by the effect of applied additive while the salt rejection shows an inverse relationship with the mean pore size regardless of the applied additive. The salt permeation flux is a function of total porosity while the salt rejection is a function of surface porosity. Pervaporation tests show that both permeation flux and enrichment factor depend on the total porosity of the support membrane.

References

She M, Hwang ST. Effects of concentration, temperature, and coupling on pervaporation of dilute flavor organics. J Membr Sci 2006; 271: 16-28. https://doi.org/10.1016/j.memsci.2005.07.005

Hasanoglu A, Salt Y, Keleser S, Ozkan S, Dincer S. Pervaporation separation of organics from multicomponent aqueous mixtures. J Chem Eng Process 2007; 46: 300-306. https://doi.org/10.1016/j.cep.2006.06.010

Schnabel S, Moulin P, Nguyen QT, Roizard D, Aptel P. Removal of volatile organic components (VOCs) from water by pervaporation: separation improvement by Dean vortices. J Membr Sci 1998; 142: 129-141. https://doi.org/10.1016/S0376-7388(97)00326-8

Peters TA, Poeth CHS, Benes NE, Buijs HCWM, Vercauteren FF, Keurentjes JTF. Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; contradicting the flux-selectivity paradigm. J Membr Sci 2006; 276: 42-50. https://doi.org/10.1016/j.memsci.2005.06.066

Kreiter R, Wolfs DP, Engelen CWR, van Veen HM, Vente JF. High-temperature pervaporation performance of ceramic-supported polyimide membranes in the dehydration of alcohols. J Membr Sci 2008; 319: 126-132. https://doi.org/10.1016/j.memsci.2008.03.026

Hasanoglu A, Salt Y, Keleser S, Dincer S. The esterification of acetic acid with ethanol in a pervaporation membrane reactor. Desalination 2009; 245: 662-669. https://doi.org/10.1016/j.desal.2009.02.034

Ray S, Ray SK. Separation of organic mixtures by pervaporation using crosslinked and filled rubber membranes. J Membr Sci 2006; 285: 108-119. https://doi.org/10.1016/j.memsci.2006.08.009

Rautenbach R, Albrecht R. Membrane processes. New York: John Wiley; 1989. .

Norman NN, Anthony G, Winston Ho WS, Matsuura T. Advanced membrane technology and applications. New Jersey: John Wiley; 2008.

Feng X, Huang RYM. Preparation and performance of asymmetric polyetherimide membranes for isopropanol dehydration by pervaporation. J Membr Sci 1996; 109: 165-172. https://doi.org/10.1016/0376-7388(95)00198-0

Hof JA, Reuvers AJ, Boom RM, Rolevink HHM, Smolders CA. Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method. J Membr Sci 1992; 70: 17-30. https://doi.org/10.1016/0376-7388(92)80076-V

Chakrabarty B, Ghoshal AK, Purkait MK. Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J Membr Sci 2008; 315: 36-47. https://doi.org/10.1016/j.memsci.2008.02.027

Jadav GL, Aswal VK, Singh PS. In-situ preparation of polydimethylsiloxane membrane with long hydrophobic alkyl chain for application in separation of dissolved volatile organics from wastewater. J Membr Sci 2015; 492: 95-106. https://doi.org/10.1016/j.memsci.2015.05.050

Greer DR, Ozcam AE, Balsara NP. Pervaporation of organic compounds from aqueous mixtures using polydimethylsiloxane-containing block copolymer membranes. AIChE J 2015; 61: 2789-2794. https://doi.org/10.1002/aic.14876

Jung B, Yoon Jo K, Kim B, Rhee HW. Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J Membr Sci 2004; 243: 45-57. https://doi.org/10.1016/j.memsci.2004.06.011

Rahimpour A, Madaeni SS. Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. J Membr Sci 2007; 305: 299-312. https://doi.org/10.1016/j.memsci.2007.08.030

Jin TT, Zhao ZP, Chen KC. Preparation of a poly(vinyl chloride) ultrafiltration membrane through the combination of thermally induced phase separation and non-solvent-induced phase separation. J Appl Polym Sci 2016; 42953: 1-12. https://doi.org/10.1002/app.42953

de Bruijn FT, Suna L, Oluji Z, Jansens PJ, Kapteijn F. Influence of the support layer on the flux limitation in pervaporation. J Membr Sci 2003; 223: 141-156. https://doi.org/10.1016/S0376-7388(03)00318-1

Tan S, Li L, Zhang Z, Wang Z. The influence of support layer structure on mass transfer in pervaporation of composite PDMS-PSF membranes. J Chem Eng 2010; 157: 304-310. https://doi.org/10.1016/j.cej.2009.10.060

Bode E, Hoempler C. Transport resistances during Pervaporation through a composite membrane: experiments and model calculations. J Membr Sci 1996; 113: 43-56. https://doi.org/10.1016/0376-7388(95)00213-8

Kim HJ, Nah SS, Ryul B. A new technique for preparation of PDMS pervaporation membrane for VOC removal. Adv Environ Res 2002; 6: 255-264. https://doi.org/10.1016/S1093-0191(01)00056-9

Rezakazemi M, Shahidi K, Mohammadi T. Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalin Water Treat 2015; 54: 1542-1549.

Trifunovic O, Tragardh G. The influence of support layer on mass transfer of homologous series of alcohols and esters through composite pervaporation membranes. J Membr Sci 2005; 259: 122-134. https://doi.org/10.1016/j.memsci.2005.03.011

Rautenbach R, Helmus FP. Some considerations on mass transfer resistances in solution-diffusion type membrane processes. J Membr Sci 1994; 87: 171-181. https://doi.org/10.1016/0376-7388(93)E0130-C

Sun D, Yang Q-C, Sun H-L, Liu J-M, Xing Z-L, Li B-B. Effects of PES support layer structure on pervaporation performances of PDMS/PES hollow fiber composite membranes. Desalin Water Treat 2016; 57: 9123-9135. https://doi.org/10.1080/19443994.2015.1028458

Zhu JM, Li G, Jiang LY. Fabrication and structural tuning of novel composite hollow fiber membranes for pervaporation. J Appl Polym Sci 2016; 43324: 1-13. https://doi.org/10.1002/app.43324

Idris A, Yet LK. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J Membr Sci 2006; 280: 920-927. https://doi.org/10.1016/j.memsci.2006.03.010

Han MJ, Nam SI. Thermodynamic and rheological variation in poly(sulfone) solution be PVP and its effect in the preparation of phase inversion membrane. J Membr Sci 2002; 202: 55-61. https://doi.org/10.1016/S0376-7388(01)00718-9

Li JF, Xu ZL, Yang H, Yu LY, Liu M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 2009; 255: 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139

Madaeni SS, Rahimpour A, Barzin J. Preparation of polysulphone ultrafiltration membranes for milk concentration: effect of additives on morphology and performance. Iran Polym J 2005; 14: 421-428.

Salehi S, Mortaheb HR, Barzin J, Ehsani MR. Pervaporative performance of a PDMS/blended PES composite membrane for removal of toluene from water. Desalination 2012; 287: 281-289. https://doi.org/10.1016/j.desal.2011.08.062

Barth C, Goncalves MC, Pires ATN, Roeder J, Wolf BA. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J Membr Sci 2000; 169: 287-299. https://doi.org/10.1016/S0376-7388(99)00344-0

Barzin J, Sadatnia B. Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents. J Membr Sci 2008; 325: 92-97. https://doi.org/10.1016/j.memsci.2008.07.003

Barzin J, Feng C, Khulbe KC, Matsuura T, Madaeni SS, Mirzadeh H. Characterizatin of polyethersulfon hemodialysis membrane by ultrafilteration and atomic force microscopy. J Membr Sci 2004; 237: 77-85. https://doi.org/10.1016/j.memsci.2004.02.029

Barzin J, Sadatnia B. Theoretical phase diagram calculation and membrane morphology evaluation for water/solvent/ polyethersulfone systems. Polymer 2007; 48: 1620-1631. https://doi.org/10.1016/j.polymer.2007.01.049

Dal-Cin M, Tam CM, Guiver M, Tweddle TA. Polysulfone membranes. V. poly(phenylsulfone)(Radel R)- poly(vinyl pyrrolidone) membranes. J Appl Polym Sci 1994; 54: 783-792. https://doi.org/10.1002/app.1994.070540609

Barzin J, Madaeni SS, Mirzadeh H. Effect of preparation conditions on morphology and performance of hemodialysis membranes prepared from polyether sulphone and polyvinyl pyrrolidone. Iran Polym J 2005; 14: 353-360.

Madaeni SS, Barzin J, Jokar Z. Evaluation of the morphology and performance of polyether sulfone reverse osmosis composite and non-composite membranes. Polym Polym Compos 2009; 17: 101-108.

Liu Y, Koops GH, Strathmann H. Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution. J Membr Sci 2003; 223: 187-199. https://doi.org/10.1016/S0376-7388(03)00322-3

Kim JH, Lee KH. Effect of PEG additive of membrane formation by phase inversion. J Membr Sci 1998; 138: 153-163. https://doi.org/10.1016/S0376-7388(97)00224-X

Chuang WY, Young TH, Chiu WY, Lin CY. The effect of polymeric additives on the structure and permeability of poly(vinylalcohol) asymmetric membranes. Polymer 2000; 41: 5633-5641. https://doi.org/10.1016/S0032-3861(99)00818-6

Hobǽk TC, Leinan KG, Leinaas HP, Thaulow C. Surface nanoengineering inspired by evolution. BioNanoSci 2011; 1: 63-77. https://doi.org/10.1007/s12668-011-0014-5

Downloads

Published

2017-08-04

How to Cite

Salehi Shahrabi, S., Reza Mortaheb, H., Barzin, J., & Reza Ehsani, M. (2017). Nanoporous Polyether Sulfone Membrane, Preparation and Characterization: Effect of Porosity and Mean Pore Size on Performance. Journal of Membrane and Separation Technology, 6(2), 71–84. https://doi.org/10.6000/1929-6037.2017.06.02.4

Issue

Section

Articles