Chiral Separation of D,L-Mandelic Acid Using An Enantioselective Membrane Formed by Polycondensation of β-Cyclodextrin with 1,6-Diisocyanatohexane on A Polysulfone Membrane

Authors

  • Fei-Yu Tian Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
  • Jun- Hui Zhang Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
  • Ai-Hong Duan Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
  • Bang-Jin Wang Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
  • Li-Ming Yuan Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China

DOI:

https://doi.org/10.6000/1929-6037.2012.01.02.1

Keywords:

Chiral separation, enantioselective composite membrane, polycondensation, D,L-mandelic acid, poly(?-cyclodextrin crosslinked with 1,6-diisocyanatohexane)

Abstract

An enantioselective composite membrane was prepared by polycondensation between β-cyclodextrin (β-CD) on a polysulfone support (PS) and a heptane solution of 1,6-diisocyanatohexane (1,6-DCH). The flux and permselective properties of the composite membrane were studied using an aqueous solution of D,L-mandelic acid as the feed solution. The influences of a number of parameters, such as the air-drying time of the β-CD solution on PS, the time of polymerization, the operating pressure and the feed concentration of the racemate, were studied. Chemical characterization was carried out using Fourier transform infrared spectroscopy and the top surface/cross-section was analyzed by scanning electron microscopy. The results showed that when using the enantioselective composite membrane for the optical resolution of the D,L-mandelic acid racemic mixture, an enantiomeric excess of over 85% could be obtained. The paper thus details, for the first time, how a poly(β-CD crosslinked with 1,6-DCH)/PS composite membrane can be used as an optical resolution membrane material to isolate the optical isomers of D,L-mandelic acid.

References

Maier NM, France P, Lindner W. Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 2001; 906: 3-33. http://dx.doi.org/10.1016/S0021-9673(00)00532-X

Xie R, Chu LY, Deng JG. Membranes and membrane processes for chiral resolution. Chem Soc Rev 2008; 37: 1243-63. http://dx.doi.org/10.1039/b713350b

Romero J, Zydney AL. Staging of affinity ultrafiltration processes for chiral separations. J Membr Sci 2002; 209: 107-19. http://dx.doi.org/10.1016/S0376-7388(02)00283-1

Zhao M, Xu XL, Jiang YD, Sun WZ, Wang WF, Yuan LM. Enantioseparation of trans-stilbene oxide using a cellulose acetate membrane. J Membr Sci 2009; 336: 149-53. http://dx.doi.org/10.1016/j.memsci.2009.03.034

Xiong WW, Wang WF, Zhao L, Song Q, Yuan LM. Chiral separation of (R,S)-2-phenyl-1-propanol through glutaraldehyde-crosslinked chitosan membranes. J Membr Sci 2009; 328: 268-72. http://dx.doi.org/10.1016/j.memsci.2008.12.019

Matsuoka Y, Kanda N, Lee YM, Higuchi A. Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes. J Membr Sci 2006; 280: 116-23. http://dx.doi.org/10.1016/j.memsci.2006.01.013

Hazarika S. Enantioselective permeation of racemic alcohol through polymeric membrane. J Membr Sci 2008; 310: 174-83. http://dx.doi.org/10.1016/j.memsci.2007.10.055

Sueyoshi Y, Fukushima C, Yoshikawa M. Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membr Sci 2010; 357: 90-97. http://dx.doi.org/10.1016/j.memsci.2010.04.005

Liu LF, Yu SC, Zhou Y, Gao CJ. Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD). I. Preparation and characterization of ICIC-MPD membrane. J Membr Sci 2006; 281(1-2): 88-94. http://dx.doi.org/10.1016/j.memsci.2006.03.012

Kim JH, Lee KH, Kim SY. Pervaporation separation of water from ethanol through polyimide composite membranes. J Membr Sci 2000; 169(1): 81-89. http://dx.doi.org/10.1016/S0376-7388(99)00335-X

Zhou Y, Yu SC, Liu MH, Gao CJ. Preparation and characterization of polyamide-urethane thin-film composite membranes. Desalination 2005; 180(1-3): 189. http://dx.doi.org/10.1016/j.desal.2004.12.037

Seman MNA, Hayet MK, Hilal N. Nanofiltration thin-film composite polyester polyethersulfone-based membranes

prepared by interfacial polymerization. J Membr Sci 2010; 348: 109-16. http://dx.doi.org/10.1016/j.memsci.2009.10.047

Dickson JM, Childs RF, McCarry BE, Gagnon DR. Development of a coating technique for the internal structure of polypropylene microfiltration membranes. J Membr Sci 1998; 148: 25. http://dx.doi.org/10.1016/S0376-7388(98)00142-2

Higuchi A, Tamai M, Ko YA, Tagawa YI, Wu YH, Freeman BD, et al. Polymeric menbranes for chiral separation of pharmaceuticals and chemicals. Polym Rev 2011; 50: 113-43. http://dx.doi.org/10.1080/15583721003698853

Yuan LM. Chiral recognition materials. Beijing: Science Press 2010; pp. 121-254.

Jiang LY, Chung TS. Homogeneous polyimide/cyclodextrin composite membranes for pervaporation dehydration of isopropanol. J Membr Sci 2010; 346: 45-58. http://dx.doi.org/10.1016/j.memsci.2009.09.014

Rölling P, Lamers M, Staudt C. Cross-linked membranes based on acrylated cyclodextrins and polyethylene glycol dimethacrylates for aromatic/aliphatic separation. J Membr Sci 2010; 362: 154-63. http://dx.doi.org/10.1016/j.memsci.2010.06.036

Yudiato A, Dewi E, Kokugan T. Separation of isomers by ultrafiltration using modified cyclodextrins. Sep Purif Technol 2000; 10: 103-12. http://dx.doi.org/10.1016/S1383-5866(00)00055-1

Dai RJ, Su CL, Wu HY, Deng YL. Separation of salsolinol using β-cyclodexytrin-modified chiral membrane. Trans Beijing Inst Technol 2008; 28: 557-57.

Long YD, Huang TB. Enantioselective Permeation of Amino Acids Through β-Cyclodextrin Polymer Membranes. Chem J Chin Univ 1999; 20: 884-86.

Wang HD, Chu LY, Song H, Yang JP, Xie R, Yang M. Preparation and enantiomer separation characteristics of Chitosan/β-cyclodextrin composite membranes. J Membr Sci 2007; 297: 262-70. http://dx.doi.org/10.1016/j.memsci.2007.03.055

Xiao Y, Chung TS. Functionalization of cellulose dialysis membranes for chiral separation using beta-cyclodextrin immobilization. J Membr Sci 2009; 290: 78-85. http://dx.doi.org/10.1016/j.memsci.2006.12.016

Xiao Y, Lim HM, Chung TS, Raj R. Acetylation of β-cyclodextrin surface-functionalized cellulose dialysis membranes with enhanced chiral separation. Langmuir 2007; 32: 12990-96. http://dx.doi.org/10.1021/la7026384

Zhou ZZ, Xiao YC, Hatton TA, Chung TS. Effects of spacer arm length and benzoation on enantioseparation performance of β-cyclodextrin functionalized cellulose membranes. J Membr Sci 2009; 339: 21-27. http://dx.doi.org/10.1016/j.memsci.2009.04.015

Choi WJ, Lee KY, Kang SH, Lee SB. Biocatalytic enantioconvergent separation of racemic mandelic acid. Sep Purif Technol 2007; 53: 178-82. http://dx.doi.org/10.1016/j.seppur.2006.06.024

Downloads

Published

2012-12-31

How to Cite

Tian, F.-Y., Zhang, J.-. H., Duan, A.-H., Wang, B.-J., & Yuan, L.-M. (2012). Chiral Separation of D,L-Mandelic Acid Using An Enantioselective Membrane Formed by Polycondensation of β-Cyclodextrin with 1,6-Diisocyanatohexane on A Polysulfone Membrane. Journal of Membrane and Separation Technology, 1(2), 72–78. https://doi.org/10.6000/1929-6037.2012.01.02.1

Issue

Section

Articles