Catalytic Recovery of Elemental Sulfur Using a Novel Catalytic Membrane Reactor at Room Temperature with a Layer of Dispersed Mo-Co/γ-Al2O3 Catalyst: Reaction Kinetics and Mass Transfer Study

Authors

  • Xiao Yuan Chen Department of Chemical Engineering, Université Laval, Quebec City, QC, G1V 0A6, Canada
  • Serge Kaliaguine Department of Chemical Engineering, Université Laval, Quebec City, QC, G1V 0A6, Canada
  • Denis Rodrigue Department of Chemical Engineering, Université Laval, Quebec City, QC, G1V 0A6, Canada

DOI:

https://doi.org/10.6000/1929-6037.2017.06.01.1

Keywords:

Polymer, membrane, gas separation, permeability, permeance, selectivity

Abstract

The mass transfer rate of catalytic recovery of sulfur is investigated, enters through the catalyst-membrane interface (layer), accompanied by pseudo-first order irreversible reaction. Reaction kinetics is measured considering the system as a homogeneous system due to the consideration of mixed flow patterns of the reacting fluids, though the catalysis is a heterogeneous one. The multi-reactant mass transfer behaviour of the catalytic membrane reactor (CMR) is also studied on the basis of Maxwell-Stefan theory to understand the diffusion of reactants inside the membrane reactor. The mass transport behaviour and the performance of the fabricated CMR are strongly influenced by the reaction conditions, such as, reaction equilibrium constant (Keq) and membrane properties, namely, membrane area and reactor volume. An intermediate value with asymptotic nature of Keq as a function of time indicates appreciable performance of the catalytic membrane. On the other hand, the minimum value of kij indicates a negligible effect on mass transfer over the reactor performance.

References

Julbe A, Farrusseng D, Guizard C. Porous ceramic membranes for catalytic reactors - overview and new ideas. J Membr Sci 2001; 181: 3-20. https://doi.org/10.1016/S0376-7388(00)00375-6

Westermann T, Melin T. Flow-through catalytic membrane reactors-Principles and applications. Chem Eng Process 2009; 48: 17-28. https://doi.org/10.1016/j.cep.2008.07.001

Dixon AG (1999) Innovations in catalytic inorganic membrane reactors In: Spivey JJ, editors.(Chapter 2), Catalysis. vol. 14 of Specialist Periodical Reports, RSC Publishing 1999; p. 40-92.

Armor JN. Applications of catalytic inorganic membrane reactors to refinery products. J Membr Sci 1998; 147: 217-33. https://doi.org/10.1016/S0376-7388(98)00124-0

Sanchez JG, Tsotsis TT. Catalytic Membranes and Membrane Reactors, Wiley-VCH: Verlag, Weinheim; 2002.

Dong XL, Jin WQ, Xu NP, Li K. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications. Chem Commun 2001; 47: 10886-902. https://doi.org/10.1039/c1cc13001c

Sloot HJ, Versteeg GF, Smolders CA, van Swaai, WPM. A non-permselective membrane reactor for the selective catalytic reduction of NOx with ammonia. Key Eng Mat 1991; 61 (1): 261-66.

Sloot HJ, Smolders CA, van Swaaij, WPM, Versteeg GF. High-temperature membrane reactor for catalytic gas-solid reactions. AIChE J 1992; 38: 887-900. https://doi.org/10.1002/aic.690380610

Veldsink J W, van Damme RMJ, Versteeg GF, van Swaaij WPM. A catalytically active membrane reactor for fast, exothermic, heterogeneously catalysed reactions. Chem Eng Sci 1992; 47: 2939-44. https://doi.org/10.1016/0009-2509(92)87155-J

Harold MP, Zaspalis VT, Keizer K, Burggraaf AJ. Intermediate product yield enhancement with a catalytic inorganic membrane - I. Analytical model for the case of isothermal and differential operation. Chem Eng Sci 1993; 48 (15): 2705-25. https://doi.org/10.1016/0009-2509(93)80183-Q

Saracco G, Veldsink JW, Versteeg GF, Van Swaaij WPM. Catalytic combustion of propane in a membrane reactor with separate feed of reactants -- I. Operation in absence of trans-membrane pressure gradients. Chem Eng Sci 1995; 50 (12): 2005-15. https://doi.org/10.1016/0009-2509(95)00051-6

Neomagus HWJP, Saracco G, Wessel HFW, Versteeg GF. The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants. Chem Eng J 2000; 77 (3): 165-77. https://doi.org/10.1016/S1385-8947(99)00163-1

Murru M, Gavriilidis A. Catalytic combustion of methane in non-permselective membrane reactors with separate reactant feeds. Chem Eng J 2004; 100: 23-32. https://doi.org/10.1016/j.cej.2003.11.015

Bottino A, Capannelli G, Comite A. Catalytic membrane reactors for the oxidehydrogenation of propane: experimental and modelling study. J Membr Sci 2002; 197: 75-88. https://doi.org/10.1016/S0376-7388(01)00631-7

Mengers H, Benes NE, Nijmeijer K. Multi-component mass transfer behaviour in catalytic membrane reactors. Chem Eng Sci 2014; 117: 45-54. https://doi.org/10.1016/j.ces.2014.06.010

Habib MA, Ahmed P, Mansour RB, Badr HM, Kirchen P, Ghoniem AF. Modelling of a combined ion transport and porous membrane reactor for oxy-combustion. J Membr Sci 2013; 446: 230-43. https://doi.org/10.1016/j.memsci.2013.06.035

Abejón R, Gijiu CL, Belleville MP, Jeanjean DP, Marcano JS. Simulation and analysis of the performance of tubular enzymatic membrane reactors under different configurations, kinetics and mass transport conditions. J Membr Sci 2015; 473: 189-200. https://doi.org/10.1016/j.memsci.2014.09.020

Marín P, Patiño Y, Díez FV, Ordóñez S. Modelling of hydrogen perm-selective membrane reactors for catalytic methane steam reforming. Int J Hydrogen Energ 2012; 37(23): 18433-45. https://doi.org/10.1016/j.ijhydene.2012.08.147

Hong J, Kirchen P, Ghoniem AF. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. J Membr Sci 2012; 407-408: 71-85. https://doi.org/10.1016/j.memsci.2012.03.018

Lopes JP, Alves MA, Oliveira MSN, Cardoso SSS, Rodrigues AE. Internal mass transfer enhancement in flow-through catalytic membranes. Chem Eng Sci 2013; 104: 1090-1106. https://doi.org/10.1016/j.ces.2013.10.016

Bose S, Das C. Preparation, characterization, and activity of γ-alumina-supported molybdenum/cobalt catalyst for the removal of elemental sulfur. Appl Catal A: Gen 2016; 512: 15-26. https://doi.org/10.1016/j.apcata.2015.12.006

Bose S, Das C. Preparation and characterization of low cost tubular ceramic support membranes using sawdust as a pore-former. Mater Lett 2013; 110: 152-55. https://doi.org/10.1016/j.matlet.2013.08.019

Bose S, Das C. Role of binder and preparation pressure in tubular ceramic membrane processing: Design and optimization study using Response Surface Methodology (RSM). Ind Eng Chem Res 2014; 53 (31): 12319-329. https://doi.org/10.1021/ie500792a

Bose S, Das C. Sawdust: From wood waste to pore-former in the fabrication of ceramic membrane. Ceram Int 2015; 41 (3): 4070-79. https://doi.org/10.1016/j.ceramint.2014.11.101

Mendiroz S, Munoz V, Alvarez E, Palacios JM. Kinetic study of the Claus reaction at low temperature using γ-alumina as catalyst. Appl Catal A: Gen 1995; 132: 111-26. https://doi.org/10.1016/0926-860X(95)00157-3

Monnery WD, Hawboldt KA, Pollock A, Svrcek WY. New experimental data and kinetic rate expression for the Claus reaction. Chem Eng Sci 2000; 55: 5141-48. https://doi.org/10.1016/S0009-2509(00)00146-9

Huang H, Leung DYC, Ye D. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. J Mater Chem 2011; 21: 9647-52. https://doi.org/10.1039/c1jm10413f

An N, Yu Q, Liu G, Li S, Jia M, Zhang W. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method. J Hazard Mater 2011; 186 (2-3): 1392-97. https://doi.org/10.1016/j.jhazmat.2010.12.018

Chen BB, Shi C, Crocker M, Wang Y, Zhu AM. Catalytic removal of formaldehyde at room temperature over supported gold catalyst. Appl Catal B: Environ 2013; 132-133: 245-55. https://doi.org/10.1016/j.apcatb.2012.11.028

Taylor R, Krishna R. Multicomponent Mass Transfer. Wiley Series in Chemical Engineering: New York; 1993.

Khanmamedov TK, Weiland RH. Catalytic oxidation of hydrogen sulphide. Sulfur 2013; 345: 62-8.

Mason EA, Malinauskas AP. Gas Transport in Porous Media, The Dusty Gas Model. Elsevier: Amsterdam; 1983.

Wesselingh JA, Krishna R. Mass Transfer in Multicomponent Mixtures, VSSD, Delft; 2000.

Fuller EN, Schettler PD, Giddings JC. New method for prediction of binary gas-phase diffusion coefficients. Ind Eng Chem Res 1996; 58(5): 18-27. https://doi.org/10.1021/ie50677a007

Li K. Ceramic membranes for separation and reaction. John Wiley & Sons Ltd; 2007.

Sloot HL, Versteeg GF, Van Swaaij WPM. A non-permselective membrane reactor for chemical processes normally requiring strict stoichiometric feed rates of reactants. Chem Eng Sci1990; 45(8): 2415-21. https://doi.org/10.1016/0009-2509(90)80123-V

Downloads

Published

2017-04-07

How to Cite

Chen, X. Y., Kaliaguine, S., & Rodrigue, D. (2017). Catalytic Recovery of Elemental Sulfur Using a Novel Catalytic Membrane Reactor at Room Temperature with a Layer of Dispersed Mo-Co/γ-Al2O3 Catalyst: Reaction Kinetics and Mass Transfer Study. Journal of Membrane and Separation Technology, 6(1), 1–15. https://doi.org/10.6000/1929-6037.2017.06.01.1

Issue

Section

Articles