Therapeutic Potential of the Natural Product Mangiferin in Metabolic Syndrome

Authors

  • Raihan H. Mirza Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
  • Nan Chi Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
  • Yuling Chi Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA

DOI:

https://doi.org/10.6000/1929-5634.2013.02.02.2

Keywords:

Mangiferin, metabolism, mitochondrial, oxidative stress, inflammation, hyperlipidemia, hyperglycemia, lipogenesis, lipolysis, gluconeogenesis, glycolysis

Abstract

Natural products have long been and continue to be attractive source of nutritional and pharmacological therapeutics. Interest in natural compounds as potential therapies for metabolic syndrome have recently focused on hydroxylated aromatics, such as resveratrol. Another compound of interest in this regard is mangiferin, the predominant constituent of extracts of the mango plant Mangifera indica. Mangiferin has documented antioxidant, cardioprotective and anti-inflammatory effects. Recently, pilot studies indicate bioactivity of this compound in mediating insulin sensitivity and modulating lipid metabolism. In this review we provide information on what we know about the impact of mangiferin on important biological processes involved in metabolic disorders.

References

Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and Trends in Obesity Among US Adults, 1999-2008. J Am Med Assoc 2010; 303(3): 235-41. http://dx.doi.org/10.1001/jama.2009.2014

Popkin BM. The nutrition transition and obesity in the developing world. J Nutr 2001; 131(3): 871s-3s.

American Heart Association. International cardiovascular disease statistics. Statistical fact sheet 2009 update. http://americanheart.org/downloadable/heart/1236204012112INTL.pdf.

American Heart Association. Heart and stroke facts: statistical update. 2010 Report. http://www.americanheart. org/downloadable/heart/1265665152970DS-3241 %20Heart Stroke Update_2010.pdf.

Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011; 378(9785): 31-40. http://dx.doi.org/10.1016/S0140-6736(11)60679-X

Tobinick EL. The Value of Drug Repositioning in the Current Pharmaceutical Market. Drug News Perspect 2009; 22(2): 119-25. http://dx.doi.org/10.1358/dnp.2009.22.2.1343228

Grabowski H. Are the economics of pharmaceutical research and development changing?: productivity, patents and political pressures. Pharmacol Economics 2004; 22(2 Suppl 2): 15-24. http://dx.doi.org/10.2165/00019053-200422002-00003

Vernon JA. Examining the link between price regulation and pharmaceutical R&D investment. Health Econ 2005; 14(1): 1-16. http://dx.doi.org/10.1002/hec.897

Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007; 70(3): 461-77. http://dx.doi.org/10.1021/np068054v

Butler MS. Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep 2005; 22(2): 162-95. http://dx.doi.org/10.1039/b402985m

Sanchez GM, Re L, Giuliani A, Nunez-Selles AJ, Davison GP, Leon-Fernandez OS. Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol Res 2000; 42(6): 565-73. http://dx.doi.org/10.1006/phrs.2000.0727

el Sissi HI, Saleh NA. Phenolic components of Mangifera indica. II. Planta Medica 1965; 13(3): 346-52. http://dx.doi.org/10.1055/s-0028-1100128

Daud NH, Aung CS, Hewavitharana AK, Wilkinson AS, Pierson JT, Roberts-Thomson SJ, et al. Mango extracts and the mango component mangiferin promote endothelial cell migration. J Agric Food Chem 2010; 58(8): 5181-6. http://dx.doi.org/10.1021/jf100249s

Liu H, Wu B, Pan G, He L, Li Z, Fan M, et al. Metabolism and pharmacokinetics of mangiferin in conventional rats, pseudo-germ-free rats, and streptozotocin-induced diabetic rats. Drug Metab Dispos 2012; 40(11): 2109-18. http://dx.doi.org/10.1124/dmd.112.045849

Liu Y, Xu F, Zeng X, Yang L, Deng Y, Wu Z, et al. Application of a liquid chromatography/tandem mass spectrometry method to pharmacokinetic study of mangiferin in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878(32): 3345-50. http://dx.doi.org/10.1016/j.jchromb.2010.10.014

Martínez Sánchez G, Candelario-Jalil E, Giuliani A, León OS, Sam S, Delgado R, et al. Mangifera indica L. extract (QF808) reduces ischaemia-induced neuronal loss and oxidative damage in the gerbil brain. Free Radic Res 2001; 35(5): 465-73. http://dx.doi.org/10.1080/10715760100301481

DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. New Engl J Med 2003; 348(26): 2656-68. http://dx.doi.org/10.1056/NEJMra022567

Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307(5708): 384-7. http://dx.doi.org/10.1126/science.1104343

Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39: 359-407. http://dx.doi.org/10.1146/annurev.genet.39.110304.095751

Prabhu S, Jainu M, Sabitha KE, Devi CSS. Effect of mangiferin on mitochondrial energy production in experimentally induced myocardial infarcted rats. Vasc Pharmacol 2006; 44(6): 519-25. http://dx.doi.org/10.1016/j.vph.2006.03.012

Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13. http://dx.doi.org/10.1042/BJ20081386

Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120(4): 483-95. http://dx.doi.org/10.1016/j.cell.2005.02.001

Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59(3): 527-605.

Maritim AC, Sanders RA, Watkins JB, 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17(1): 24-38. http://dx.doi.org/10.1002/jbt.10058

Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000; 49(2 Suppl 1): 27-9. http://dx.doi.org/10.1016/S0026-0495(00)80082-7

Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999; 48(1): 1-9. http://dx.doi.org/10.2337/diabetes.48.1.1

Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40(4): 405-12. http://dx.doi.org/10.2337/diabetes.40.4.405

Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10(6): 453-71. http://dx.doi.org/10.1038/nrd3403

Wattanapitayakul SK, Bauer JA. Oxidative pathways in cardiovascular disease: roles, mechanisms, and therapeutic implications. Pharmacol Ther 2001; 89(2): 187-206.

Andreu GP, Delgado R, Velho JA, Curti C, Vercesi AE. Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate. Eur J Pharmacol 2005; 513(1-2): 47-55.

Leiro JM, Alvarez E, Arranz JA, Siso IG, Orallo F. In vitro effects of mangiferin on superoxide concentrations and expression of the inducible nitric oxide synthase, tumour necrosis factor-alpha and transforming growth factor-beta genes. Biochem Pharmacol 2003; 65(8): 1361-71. http://dx.doi.org/10.1016/S0006-2952(03)00041-8

Andreu GP, Delgado R, Velho J, Inada NM, Curti C, Vercesi AE. Mangifera indica L. extract (Vimang) inhibits Fe2+-citrate-induced lipoperoxidation in isolated rat liver mitochondria. Pharmacol Res 2005; 51(5): 427-35. http://dx.doi.org/10.1016/j.phrs.2004.11.002

Masibo M, He Q. Major mango polyphenols and their potential significance to human health. Compr Rev Food Sci Food Saf 2008; 7(4): 309-19. http://dx.doi.org/10.1111/j.1541-4337.2008.00047.x

Rajendran P, Ekambaram G, Sakthisekaran D. Cytoprotective effect of mangiferin on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Basic Clin Pharmacol 2008; 103(2): 137-42. http://dx.doi.org/10.1111/j.1742-7843.2008.00254.x

Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011; 208(3): 417-20. http://dx.doi.org/10.1084/jem.20110367

Andreu GL, Delgado R, Velho JA, Curti C, Vercesi AE. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition. Arch Biochem Biophys 2005; 439(2): 184-93. http://dx.doi.org/10.1016/j.abb.2005.05.015

Bhatia HS, Candelario-Jalil E, de Oliveira AC, Olajide OA, Martinez-Sanchez G, Fiebich BL. Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch Biochem Biophys 2008; 477(2): 253-8. http://dx.doi.org/10.1016/j.abb.2008.06.017

Leiro J, Arranz JA, Yanez M, Ubeira FM, Sanmartin ML, Orallo F. Expression profiles of genes involved in the mouse nuclear factor-kappa B signal transduction pathway are modulated by mangiferin. Int Immunopharmacol 2004; 4(6): 763-78. http://dx.doi.org/10.1016/j.intimp.2004.03.002

Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444(7121): 860-7. http://dx.doi.org/10.1038/nature05485

Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109(9): 1125-31.

Foufelle F, Ferre P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002; 366(Pt 2): 377-91. http://dx.doi.org/10.1042/BJ20020430

Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Pros Natl Acad Sci USA 2003; 100(21): 12027-32. http://dx.doi.org/10.1073/pnas.1534923100

Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 2007; 282(31): 22678-88. http://dx.doi.org/10.1074/jbc.M704213200

Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010.

Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 2005; 97(3): 497-501. http://dx.doi.org/10.1016/j.jep.2004.12.010

Niu Y, Li S, Na L, Feng R, Liu L, Li Y, Sun C. Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK. PLoS One 2012; 7(1): e30782. http://dx.doi.org/10.1371/journal.pone.0030782

Guo F, Huang C, Liao X, Wang Y, He Y, Feng R, et al. Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol Nutr Food Res 2011; 55(12): 1809-18. http://dx.doi.org/10.1002/mnfr.201100392

Miura T, Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, et al. Antidiabetic activity of a xanthone compound, mangiferin. Phytomed 2001; 8(2): 85-7. http://dx.doi.org/10.1078/0944-7113-00009

Gottlieb M, Leal-Campanario R, Campos-Esparza MR, Sánchez-Gómez MV, Alberdi E, Arranz A, et al. Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis 2006; 23(2): 374-86. http://dx.doi.org/10.1016/j.nbd.2006.03.017

Sellamuthu PS, Muniappan BP, Perumal SM, Kandasamy M. Antihyperglycemic Effect of Mangiferin in Streptozotocin Induced Diabetic Rats. J Health Sci 2009; 55(2): 206-14. http://dx.doi.org/10.1248/jhs.55.206

Li YH, Peng G, Li Q, Wen SP, Huang THW, Roufogalis BD, Yamahara J. Salacia oblonga improves cardiac fibrosis and inhibits postprandial hyperglycemia in obese zucker rats. Life Sci 2004; 75(14): 1735-46. http://dx.doi.org/10.1016/j.lfs.2004.04.013

GirGirón MD, Sevillano N, Salto R, Haidour A, Manzano M, Jiménez ML, et al. Salacia oblonga extract increases glucose transporter 4-mediated glucose uptake in L6 rat myotubes: role of mangiferin. Clin Nutr 2009; 28(5): 565-74. http://dx.doi.org/10.1016/j.clnu.2009.04.018

Huang TH, Yang Q, Harada M, Uberai J, Radford J, Li GQ, et al. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: modulation of cardiac PPAR-alpha-mediated transcription of fatty acid metabolic genes. Toxicol Appl Pharmacol 2006; 210(1-2): 78-85. http://dx.doi.org/10.1016/j.taap.2005.07.020

Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 2000; 97(4): 1784-9. http://dx.doi.org/10.1073/pnas.97.4.1784

Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002; 109(1): 121-30.

Huang TH, Peng G, Li GQ, Yamahara J, Roufogalis BD, Li Y. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha. Toxicol Appl Pharmacol 2006; 210(3): 225-35. http://dx.doi.org/10.1016/j.taap.2005.05.003

Kim Y, Lounds-Singleton AJ, Talcott ST. Antioxidant phytochemical and quality changes associated with hot water immersion treatment of mangoes (Mangifera indica L.). Food Chem 2009; 115(3): 989-93. http://dx.doi.org/10.1016/j.foodchem.2009.01.019

Kim Y, Brecht JK, Talcott ST. Antioxidant phytochemical and fruit quality changes in mango (Mangifera indica L.) following hot water immersion and controlled atmosphere storage. Food Chem 2007; 105(4): 1327-34. http://dx.doi.org/10.1016/j.foodchem.2007.03.050

McLendon AN, Spivey J, Woodis CB. African Mango (Irvingia gabonensis) Extract for Weight Loss: A Systematic Review. J Nutr Ther 2013; 2(1): 53-8.

Downloads

Published

2013-06-30

How to Cite

Mirza, R. H., Chi, N., & Chi, Y. (2013). Therapeutic Potential of the Natural Product Mangiferin in Metabolic Syndrome. Journal of Nutritional Therapeutics, 2(2), 74–79. https://doi.org/10.6000/1929-5634.2013.02.02.2

Issue

Section

Articles