L-Arginine in Nutrition: Multiple Beneficial Effects in the Etiopathology of Diabetes

Authors

  • Ana Stancic University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Department of Physiology, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
  • Aleksandra Korac University of Belgrade, Faculty of Biology, Institute of Zoology and Center for Electron Microscopy, Studentski trg 16, 11000 Belgrade, Serbia
  • Biljana Buzadzic University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Department of Physiology, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
  • Vesna Otasevic University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Department of Physiology, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
  • Aleksandra Jankovic University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Department of Physiology, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
  • Milica Vucetic University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Department of Physiology, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
  • Bato Korac University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Department of Physiology, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia

DOI:

https://doi.org/10.6000/1929-5634.2012.01.02.3

Keywords:

L-arginine, diabetes, beta-cells, insulin resistance, obesity

Abstract

L-arginine is a nutritionally important amino acid that controls a wide spectrum of cellular functions and physiological processes, acting by itself or through its various metabolites. There are several factors that determine overall L-arginine homeostasis: dietary supplementation, endogenous de novo synthesis, whole-body protein turnover and its extensive metabolism. The destiny of L-arginine is determined by the complex network of enzymes and pathways differentially expressed according to health and disease status. Diabetes is characterized by reduced concentrations of L-arginine in plasma and many tissues, and failure of its metabolic effects. Emerging data suggest that oral supplementation of L-arginine exerts multiple beneficial effects on the complex etiological and pathophysiological basis of diabetes including: i) β-cell function and mass and ii) obesity and peripheral insulin resistance. This review emphasizes important aspects of L-arginine action which classifies this amino acid as a promising therapeutic approach in the treatment of diabetes.

References

Schulze E, Steiger E. Uber das. Arginin. Z Physiol Chem 1886; 11: 43-65.

Palmer RM, Rees DD, Ashton DS, Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 1988; 153: 1251-6. http://dx.doi.org/10.1016/S0006-291X(88)81362-7

Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987 84: 9265-9. http://dx.doi.org/10.1073/pnas.84.24.9265

Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524-6. http://dx.doi.org/10.1038/327524a0

Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J 1998; 336: 1-17.

Dhanakoti SN, Brosnan JT, Brosnan ME, Herzberg GR. Net renal arginine flux in rats is not affected by dietary arginine or dietary protein intake. J Nutr 1992; 122: 1127-34.

Castillo L, Chapman TE, Sanchez M, et al. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci U S A 1993; 90: 7749-53. http://dx.doi.org/10.1073/pnas.90.16.7749

Castillo L, Ajami A, Branch S, et al. Plasma arginine kinetics in adult man: response to an arginine-free diet. Metabolism 1994; 43: 114-22. http://dx.doi.org/10.1016/0026-0495(94)90166-X

Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr 1986; 10: 227-38. http://dx.doi.org/10.1177/0148607186010002227

Flynn NE, Meininger CJ, Haynes TE, Wu G. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 2002; 56: 427-38. http://dx.doi.org/10.1016/S0753-3322(02)00273-1

Palm F, Friederich M, Carlsson PO, Hansell P, Teerlink T, Liss P. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am J Physiol Renal Physiol 2008; 294: 30-7. http://dx.doi.org/10.1152/ajprenal.00166.2007

Pieper GM, Dondlinger LA. Plasma and vascular tissue arginine are decreased in diabetes: acute arginine supplementation restores endothelium-dependent relaxation by augmenting cGMP production. J Pharmacol Exp Ther 1997; 283: 684-91.

Taboada MC, Rodriguez B, Millán R, Míguez I. Role of dietary l-arginine supplementation on serum parameters and intestinal enzyme activities in rats fed an excess-fat diet. Biomed Pharmacother 2006; 60: 10-3. http://dx.doi.org/10.1016/j.biopha.2005.07.014

Witte MB, Thornton FJ, Tantry U, Barbul A. L-Arginine supplementation enhances diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways. Metabolism 2002; 51: 1269-73. http://dx.doi.org/10.1053/meta.2002.35185

Bode-Böger SM, Böger RH, Creutzig A, et al. L-arginine infusion decreases peripheral arterial resistance and inhibits platelet aggregation in healthy subjects. Clin Sci (Lond) 1994; 87: 303-10.

Phivthong-ngam L, Bode-Böger SM, Böger RH, et al. Dietary L-arginine normalizes endothelin-induced vascular contractions in cholesterol-fed rabbits. J Cardiovasc Pharmacol 1998; 32: 300-7. http://dx.doi.org/10.1097/00005344-199808000-00019

Böger RH, Ron ES. L-Arginine improves vascular function by overcoming deleterious effects of ADMA, a novel cardiovascular risk factor. Altern Med Rev 2005; 10: 14-23.

Silk DB, Grimble GK, Rees RG. Protein digestion and amino acid and peptide absorption. Proc Nutr Soc 1985; 44: 63-72. http://dx.doi.org/10.1079/PNS19850011

Wu G, Collins JK, Perkins-Veazie P, et al. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 2007; 137: 2680-5.

Hou ZP, Yin YL, Huang RL, et al. Rice protein concentrate partially replaces dried whey in the diet for early-weaned piglets and improves their growth performance. J Sci Food Agric 2008; 88: 1187-1193. http://dx.doi.org/10.1002/jsfa.3196

King DE, Mainous AG, Geesey ME. Variation in L-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr Res 2008; 28: 21-4. http://dx.doi.org/10.1016/j.nutres.2007.11.003

Böger RH. The pharmacodynamics of L-arginine. J Nutr 2007; 137: 1650-5.

Windmueller HG, Spaeth AE. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Arch Biochem Biophys 1976; 175: 670-6. http://dx.doi.org/10.1016/0003-9861(76)90558-0

Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR. Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol 1993; 265: 532-9.

Kirk SJ, Hurson M, Regan MC, Holt DR, Wasserkrug HL, Barbul A. Arginine stimulates wound healing and immune function in elderly human beings. Surgery 1993; 114: 155-60.

Brittenden J, Heys SD, Ross J, Park KG, Eremin O. Natural cytotoxicity in breast cancer patients receiving neoadjuvant chemotherapy: effects of L-arginine supplementation. Eur J Surg Oncol 1994; 20: 467-72.

Helmbrecht GD, Farhat MY, Lochbaum L, et al. L-arginine reverses the adverse pregnancy changes induced by nitric oxide synthase inhibition in the rat. Am J Obstet Gynecol 1996; 175: 800-5. http://dx.doi.org/10.1016/S0002-9378(96)80002-0

Bortolotti M, Brunelli F, Sarti P, Miglioli M. Clinical and manometric effects of L-arginine in patients with chest pain and oesophageal motor disorders. Ital J Gastroenterol Hepatol 1997; 29: 320-4.

Facchinetti F, Longo M, Piccinini F, Neri I, Volpe A. L-arginine infusion reduces blood pressure in preeclamptic women through nitric oxide release. J Soc Gynecol Investig 1999; 6: 202-7. http://dx.doi.org/10.1016/S1071-5576(99)00017-9

Walker HA, McGing E, Fisher I, et al. Endothelium-dependent vasodilation is independent of the plasma L-arginine/ADMA ratio in men with stable angina: lack of effect of oral L-arginine on endothelial

function, oxidative stress and exercise performance. J Am Coll Cardiol 2001; 38: 499-505. http://dx.doi.org/10.1016/S0735-1097(01)01380-8

Tangphao O, Chalon S, Coulston AM, et al. L-arginine and nitric oxide-related compounds in plasma: comparison of normal and arginine-free diets in a 24-h crossover study. Vasc Med 1999; 4: 27-32.

Evans RW, Fernstrom JD, Thompson J, Morris SM Jr, Kuller LH. Biochemical responses of healthy subjects during dietary supplementation with L-arginine. J Nutr Biochem 2004; 15: 534-9. http://dx.doi.org/10.1016/j.jnutbio.2004.03.005

Luiking YC, Weusten BL, Portincasa P, Van Der Meer R, Smout AJ, Akkermans LM. Effects of long-term oral L-arginine on esophageal motility and gallbladder dynamics in healthy humans. Am J Physiol 1998; 274: 984-91.

Grimble GK. Adverse gastrointestinal effects of arginine and related amino acids. J Nutr 2007; 137: 1693-1701.

Park KGM. The Sir David Cuthbertson Medal Lecture 1992. The immunological and metabolic effects of L-arginine in human cancer. Proc Nutr Soc 1993; 52: 387-401. http://dx.doi.org/10.1079/PNS19930080

Tomé LA, Yu L, de Castro I, Campos SB, Seguro AC. Beneficial and harmful effects of L-arginine on renal ischaemia. Nephrol Dial Transplant 1999; 14: 1139-45. http://dx.doi.org/10.1093/ndt/14.5.1139

AHFS Drug Information. Bethesda, MD: American Society of Hospital Pharmacists. 2000: 2306-7.

Cauwels A, Janssen B, Buys E, Sips P, Brouckaert P. Anaphylactic shock depends on PI3K and eNOS-derived NO. J Clin Invest 2006; 116: 2244-51. http://dx.doi.org/10.1172/JCI25426

Amir S, English AM. An inhibitor of nitric oxide production, NG-nitro-L-arginine-methyl ester, improves survival in anaphylactic shock. Eur J Pharmacol 1991; 203: 125-7. http://dx.doi.org/10.1016/0014-2999(91)90800-6

Takano H, Liu W, Zhao Z, et al. N(G)-Nitro-L-arginine methyl ester, but not methylene blue, attenuates anaphylactic hypotension in anesthetized mice. J Pharmacol Sci 2007; 104: 212-7. http://dx.doi.org/10.1254/jphs.FP0070169

Schulman SP, Becker L C, Kass DA, et al. L-arginine therapy in myo-cardial infarction. The Vascular Interaction with Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA 2006; 295: 58-64. http://dx.doi.org/10.1001/jama.295.1.58

Takano H, Lim HB, Miyabara Y, Ichinose T, Yoshikawa T, Sagai M. Oral administration of L-arginine potentiates allergen-induced airway inflammation and expression of interleukin-5 in mice. J Pharmacol Exp Ther 1998; 286: 767-71.

Chambers DC, Ayres JG. Effect of nebulised L- and D-arginine on exhaled nitric oxide in steroid naive asthma. Thorax 2001; 56: 602-6. http://dx.doi.org/10.1136/thorax.56.8.602

Tankersley RW. Amino acid requirements of herpes simplex virus in human cells. J Bacteriol 1964; 87: 609-13

Yeatman TJ, Risley GL, Brunson ME. Depletion of dietary arginine inhibits growth of metastatic tumor. Arch Surg 1991; 126: 1376-82. http://dx.doi.org/10.1001/archsurg.1991.01410350066010

Grossie VB. Citrulline and arginine increase the growth of the ward colon tumor in parenterally fed rats. Nutr Cancer 1996; 26: 91-7. http://dx.doi.org/10.1080/01635589609514466

Appleton J. Arginine: Clinical potential of a semi-essential amino. Altern Med Rev 2002; 7: 512-22.

Eeagle H. Amino acid metabolism in mammalian cell cultures. Science 1959; 130: 432-7. http://dx.doi.org/10.1126/science.130.3373.432

Jackson MJ, Beaudet AL, O'Brien WE. Mammalian urea cycle enzymes. Annu Rev Genet 1986; 20: 431-64. http://dx.doi.org/10.1146/annurev.ge.20.120186.002243

Morris Sm Jr. Arginine synthesis, metabolism and transport: Regulators of nitric oxide synthesis. In: Laskin JD, Laskin DL, editors. Cellular and Molecular Biology of Nitric oxide. New York: Marcel Dekker, Inc.; 1999 p. 57-85.

Featherston WR, Rogers QR, Freedland RA. Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol 1973; 224: 127-9.

Ryall J, Nguyen M, Bendayan M, Shore GC. Expression of nuclear genes encoding the urea cycle enzymes, carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase, in rat liver and intestinal mucosa. Eur J Biochem 1985; 152: 287-92. http://dx.doi.org/10.1111/j.1432-1033.1985.tb09196.x

Levillain O, Hus-Citharel A, Morel F, Bankir L. Localization of arginine synthesis along rat nephron. Am J Physiol 1990; 259: 916-23.

Blachier F, M'Rabet-Touil H, Posho L, Darcy-Vrillon B, Duée PH. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. Eur J Biochem 1993; 216: 109-17. http://dx.doi.org/10.1111/j.1432-1033.1993.tb18122.x

Wu G, Knabe DA, Yan W, Flynn NE. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol 1995; 268: 334-42.

Herzfeld A, Raper SM. Enzymes of ornithine metabolism in adult and developing rat intestine. Biochim Biophys Acta 1976; 428: 600-10. http://dx.doi.org/10.1016/0304-4165(76)90188-4

Hurwitz R, Kretchmer N. Development of arginine-synthesizing enzymes in mouse intestine. Am J Physiol. 1986; 251: 103-10.

Yu YM, Burke JF, Tompkins RG, Martin R, Young VR. Quantitative aspects of interorgan relationships among arginine and citrulline metabolism. Am J Physiol 1996; 271: 1098-109.

Morris SM Jr. Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr 1992; 12: 81-101. http://dx.doi.org/10.1146/annurev.nu.12.070192.000501

Wu G, Bazer FW, Davis TA, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009; 37: 153-68. http://dx.doi.org/10.1007/s00726-008-0210-y

Jenkinson CP, Grody WW, Cederbaum SD. Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 1996; 114: 107-32. http://dx.doi.org/10.1016/0305-0491(95)02138-8

Malaisse WJ, Blachier F, Mourtada A, et al. Stimulus-secretion coupling of arginine-induced insulin release. Metabolism of L-arginine and L-ornithine in pancreatic islets. Biochim Biophys Acta 1989; 1013: 133-43. http://dx.doi.org/10.1016/0167-4889(89)90041-4

Gotoh T, Sonoki T, Nagasaki A, Terada K, Takiguchi M, Mori M. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett 1996; 395: 119-22. http://dx.doi.org/10.1016/0014-5793(96)01015-0

Vockley JG, Jenkinson CP, Shukla H, Kern RM, Grody WW, Cederbaum SD. Cloning and characterization of the human type II arginase gene. Genomics 1996; 38: 118-23. http://dx.doi.org/10.1006/geno.1996.0606

Pegg AE, Wechter R, Pakala R, Bergeron RJ. Effect of N1,N12-bis(ethyl)spermine and related compounds on growth and polyamine acetylation, content, and excretion in human colon tumor cells. J Biol Chem 1989; 264: 11744-9.

Sjöholm A. Role of polyamines in the regulation of proliferation and hormone production by insulin-secreting cells. Am J Physiol 1993; 264: 501-18.

Ackermann JM, Pegg AE, McCloskey DE. Drugs affecting the cell cycle via actions on the polyamine metabolic pathway. Prog Cell Cycle Res 2003; 5: 461-8.

Stone JR, Marletta MA. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 1996; 35: 1093-9. http://dx.doi.org/10.1021/bi9519718

Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109-42.

Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357: 593-615. http://dx.doi.org/10.1042/0264-6021:3570593

Stuehr DJ. Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol 1997; 37: 339-59. http://dx.doi.org/10.1146/annurev.pharmtox.37.1.339

Govers R, Oess S. To NO or not to NO: 'where?' is the question. Histol Histopathol 2004; 19: 585-605.

Lajoix AD, Reggio H, Chardès T, et al. A neuronal isoform of nitric oxide synthase expressed in pancreatic beta-cells controls insulin secretion. Diabetes 2001; 50: 1311-23. http://dx.doi.org/10.2337/diabetes.50.6.1311

Böger RH, Bode-Böger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 2001; 41: 79-99. http://dx.doi.org/10.1146/annurev.pharmtox.41.1.79

Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC. Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett 2000; 478: 1-3. http://dx.doi.org/10.1016/S0014-5793(00)01686-0

Förstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 1994; 23: 1121-31. http://dx.doi.org/10.1161/01.HYP.23.6.1121

Böger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the "L-arginine paradox" and acts as a novel cardiovascular risk factor. J Nutr 2004; 134: 2842-7.

Joshi MS, Ferguson TB Jr, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR Jr. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci U S A 2007; 104: 9982-7. http://dx.doi.org/10.1073/pnas.0506824104

García-Cardeña G, Fan R, Stern DF, Liu J, Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 1996; 271: 27237-40. http://dx.doi.org/10.1074/jbc.271.44.27237

García-Cardeña G, Martasek P, Masters BS, et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 1997; 272: 25437-40. http://dx.doi.org/10.1074/jbc.272.41.25437

Atkinson MA, Bluestone JA, Eisenbarth GS, et al. How does type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited. Diabetes 2011; 60: 1370-9. http://dx.doi.org/10.2337/db10-1797

Saltier AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799-806. http://dx.doi.org/10.1038/414799a

Halban PA, German MS, Kahn SE, Weir GC. Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 2010; 95: 1034-43. http://dx.doi.org/10.1210/jc.2009-1819

Swenne I. Effects of aging on the regenerative capacity of the pancreatic B-cell of the rat. Diabetes 1983; 32: 14-9. http://dx.doi.org/10.2337/diabetes.32.1.14

Bouwens L, Klöppel G. Islet cell neogenesis in the pancreas. Virchows Arch 1996; 427: 553-60. http://dx.doi.org/10.1007/BF00202885

Vasilijević A, Buzadžić B, Korać A, Petrović V, Janković A, Korać B. Beneficial effects of L-arginine nitric oxide-producing pathway in rats treated with alloxan. J Physiol 2007; 584: 921-33. http://dx.doi.org/10.1113/jphysiol.2007.140277

McKinnon CM, Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia 2001; 44: 1203-14. http://dx.doi.org/10.1007/s001250100628

Gagliardino JJ, Del Zotto H, Massa L, Flores LE, Borelli MI. Pancreatic duodenal homeobox-1 and islet neogenesis-associated protein: a possible combined marker of activateable pancreatic cell precursors. J Endocrinol 2003; 177: 249-59. http://dx.doi.org/10.1677/joe.0.1770249

De Haro-Hernández R, Cabrera-Muñoz L, Méndez JD. Regeneration of beta-cells and neogenesis from small ducts or acinar cells promote recovery of endocrine pancreatic function in alloxan-treated rats. Arch Med Res 2004; 35: 114-20. http://dx.doi.org/10.1016/j.arcmed.2003.10.001

Lardon J, Huyens N, Rooman I, Bouwens L. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch 2004; 444: 61-5. http://dx.doi.org/10.1007/s00428-003-0930-z

Okamoto H, Akiyama T, Nata K, et al. Reg (Regenerating gene) expression by PARP and NF-kB. Med Sci Monit 2003; 9: 50-60.

Kaneto H, Nakatani Y, Kawamori D, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2005; 37: 1595-608. http://dx.doi.org/10.1016/j.biocel.2005.04.003

Salil G, Nevin KG, Rajamohan T. Arginine-rich coconut kernel diet influences nitric oxide synthase activity in alloxan diabetic rats. J Sci Food Agric 2012; 92: 1903-8. http://dx.doi.org/10.1002/jsfa.5558

Méndez JD, Arreola MA. Effect of L-arginine on pancreatic arginase activity and polyamines in alloxan treated rats. Biochem Int 1992; 28: 569-75.

Méndez JD, De Haro Hernández R. L-arginine and polyamine administration protect β-cells against alloxan diabetogenic effect in Sprague-Dawley rats. Biomed Pharmacother 2005; 59: 283-9. http://dx.doi.org/10.1016/j.biopha.2005.05.006

Adeghate E, Ponery AS, El-Sharkawy T, Parvez H. L-arginine stimulates insulin secretion from the pancreas of normal and diabetic rats. Amino Acids 2001; 21: 205-9. http://dx.doi.org/10.1007/s007260170028

Ishii M, Shimizu S, Watabe T, Kiuchi Y. Insulin Secretion in Response to L-Arginine under Decreasing Tetrahydrobiopterin Content. Pteridines 2008; 19: 93-100.

Blachier F, Mourtada A, Sener A, Malaisse WJ. Stimulus-secretion coupling of arginine-induced insulin release. Uptake of metabolized and nonmetabolized cationic amino acids by pancreatic islets. Endocrinology 1989; 124: 134-41. http://dx.doi.org/10.1210/endo-124-1-134

Newsholme P, Brennan L, Rubi B, Maechler P. New insights into amino acid metabolism, beta-cell function and diabetes. Clin Sci (Lond) 2005; 108: 185-94. http://dx.doi.org/10.1042/CS20040290

Jimenez-Feltstrom J, Lundquist I, Obermuller S, Salehi A. Insulin feedback actions: complex effects involving isoforms of islet nitric oxide synthase. Regul Pept 2004; 122: 109-18. http://dx.doi.org/10.1016/j.regpep.2004.06.004

Laychock SG, Modica ME, Cavanaugh CT. L-arginine stimulates cyclic guanosine 3',5'-monophosphate formation in rat islets of Langerhans and RINm5F insulinoma cells: evidence for L-arginine:nitric oxide synthase. Endocrinology 1991; 129: 3043-52. http://dx.doi.org/10.1210/endo-129-6-3043

Panagiotidis G, Akesson B, Rydell EL, Lundquist I. Influence of nitric oxide synthase inhibition, nitric oxide and hydroperoxide on insulin release induced by various secretagogues. Br J Pharmacol 1995; 114: 289-96. http://dx.doi.org/10.1111/j.1476-5381.1995.tb13225.x

Henningsson R, Alm P, Lindström E, Lundquist I. Chronic blockade of NO synthase paradoxically increases islet NO production and modulates islet hormone release. Am J Physiol Endocrinol Metab 2000; 279: 95-107.

Rizzo MA, Piston DW. Regulation of beta cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J Cell Biol 2003; 161: 243-8. http://dx.doi.org/10.1083/jcb.200301063

Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994; 298: 249-58.

Krause MS, McClenaghan NH, Flatt PR, de Bittencourt PI, Murphy C, Newsholme P. L-arginine is essential for pancreatic β-cell functional integrity, metabolism and defense from inflammatory challenge. J Endocrinol 2011; 211: 87-97. http://dx.doi.org/10.1530/JOE-11-0236

Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 1996; 20: 463-6. http://dx.doi.org/10.1016/0891-5849(96)02051-5

Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997; 46: 1733-42. http://dx.doi.org/10.2337/diabetes.46.11.1733

Rocić B, Vucić M, Knezević-Cuća J, Radica A, Pavlić-Renar I, Profozić V, Metelko Z. Total plasma antioxidants in first-degree relatives of patients with insulin-dependent diabetes. Exp Clin Endocrinol Diabetes 1997; 105: 213-7. http://dx.doi.org/10.1055/s-0029-1211754

Santini SA, Marra G, Giardina B, et al. Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes 1997; 46: 1853-8. http://dx.doi.org/10.2337/diabetes.46.11.1853

Cimbaljević B, Vasilijević A, Cimbaljević S, et al. Interrelationship of antioxidative status, lipid peroxidation, and lipid profile in insulin-dependent and non-insulin-dependent diabetic patients. Can J Physiol Pharmacol 2007; 85: 997-1003. http://dx.doi.org/10.1139/Y07-088

Newsholme P, Haber EP, Hirabara SM, et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 2007; 583: 9-24. http://dx.doi.org/10.1113/jphysiol.2007.135871

Martens GA, Vervoort A, Van de Casteele M, et al. Specificity in beta cell expression of L-3-hydroxyacyl-CoA dehydrogenase, short chain, and potential role in down-regulating insulin release. J Biol Chem 2007; 282:21134-44. http://dx.doi.org/10.1074/jbc.M700083200

Jun T, Sakinis A, Wennmalm A. The insulin secretory response to intravenous glucose in the rat is independent of NO formation. Acta Physiol Scand 1995; 155: 61-5. http://dx.doi.org/10.1111/j.1748-1716.1995.tb09948.x

Patel AG, Toyama MT, Nguyen TN, et al. Role of nitric oxide in the relationship of pancreatic blood flow and exocrine secretion in cats. Gastroenterology 1995; 108: 1215-20. http://dx.doi.org/10.1016/0016-5085(95)90222-8

Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 1990; 345: 346-7. http://dx.doi.org/10.1038/345346a0

Yago MD, Mañas M, Ember Z, Singh J. Nitric oxide and the pancreas: morphological base and role in the control of the exocrine pancreatic secretion. Mol Cell Biochem 2001; 219: 107-20. http://dx.doi.org/10.1023/A:1010834611480

DiMagno MJ, Hao Y, Tsunoda Y, Williams JA, Owyang C. Secretagogue-stimulated pancreatic secretion is differentially regulated by constitutive NOS isoforms in mice. Am J Physiol Gastrointest Liver Physiol 2004; 286: 428-36. http://dx.doi.org/10.1152/ajpgi.00368.2003

Hammarstedt A, Graham TE, Kahn BB. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells. Diabetol Metab Syndr 2012; 4: 42. http://dx.doi.org/10.1186/1758-5996-4-42

Fu WJ, Haynes TE, Kohli R, et al. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 2005; 135: 714-21.

Wu G, Lee MJ, Fried SK. The arginine-NO pathway modulates lipolysis in adipose tissues of obese human subjects. FASAB J 2007; 21: A1052.

Jobgen W, Fu WJ, Gao H, et al. High fat feeding and dietary L-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 2009; 37: 187-98. http://dx.doi.org/10.1007/s00726-009-0246-7

Lucotti P, Setola E, Monti LD, et al. Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 2006; 291: 906-12. http://dx.doi.org/10.1152/ajpendo.00002.2006

Janković A, Buzadžić B, Korać A, Petrović V, Vasilijević A, Korać B. Antioxidative defense organization in retroperitoneal white adipose tissue during acclimation to cold-The involvement of L-arginine/NO pathway. J Therm Biol 2009; 34: 358-65. http://dx.doi.org/10.1016/j.jtherbio.2009.06.007

Monti LD, Galluccio E, Lucotti P, et al. Beneficial role of L-arginine in cardiac matrix remodelling in insulin resistant rats. Eur J Clin Invest 2008; 38: 849-56. http://dx.doi.org/10.1111/j.1365-2362.2008.02027.x

Saleh AI, Abdel Maksoud SM, El-Maraghy SA, Gad MZ. Protective effect of L-arginine in experimentally induced myocardial ischemia: comparison with aspirin. J Cardiovasc Pharmacol Ther 2011; 16: 53-62. http://dx.doi.org/10.1177/1074248410378506

Miguez I, Marino G, Rodriguez B, Taboada C. Effects of dietary L-arginine supplementation on serum lipids and intestinal enzyme activities in diabetic rats. J Physiol Biochem 2004; 60: 31-7. http://dx.doi.org/10.1007/BF03168218

Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 2006; 17: 571-88. http://dx.doi.org/10.1016/j.jnutbio.2005.12.001

McKnight JR, Satterfield MC, Jobgen WS, et al. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 2010; 39: 349-57. http://dx.doi.org/10.1007/s00726-010-0598-z

Tan B, Yin Y, Liu Z, et al. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 2011; 22: 441-5. http://dx.doi.org/10.1016/j.jnutbio.2010.03.012

Chessler SD, Fujimoto WY, Shofer JB, Boyko EJ, Weigle DS. Increased plasma leptin levels are associated with fat accumulation in Japanese Americans. Diabetes 1998; 47: 239-43. http://dx.doi.org/10.2337/diabetes.47.2.239

Stingl H, Raffesberg W, Nowotny P, Waldhäusl W, Roden M. Reduction of plasma leptin concentrations by arginine but not lipid infusion in humans. Obes Res 2002; 10: 1111-9. http://dx.doi.org/10.1038/oby.2002.151

Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature (London) 2002; 420: 333-6. http://dx.doi.org/10.1038/nature01137

Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol 2003; 149: 331-5. http://dx.doi.org/10.1530/eje.0.1490331

Smith SR, Bai F, Charbonneau C, Janderova L, Argyropoulos G. A promoter genotype and oxidative stress potentially link resistin to human insulin resistance. Diabetes 2003; 52: 1611-8. http://dx.doi.org/10.2337/diabetes.52.7.1611

Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277-359. http://dx.doi.org/10.1152/physrev.00015.2003

Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509-17. http://dx.doi.org/10.1056/NEJMoa0810780

Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518-25. http://dx.doi.org/10.1056/NEJMoa0808949

van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500-8. http://dx.doi.org/10.1056/NEJMoa0808718

Vasilijević A, Vojčić Lj, Dinulović I, et al. Expression pattern of thermogenesis-related factors in interscapular brown adipose tissue of alloxan-treated rats: beneficial effect of L-arginine. Nitric Oxide 2010; 23: 42-50. http://dx.doi.org/10.1016/j.niox.2010.04.001

Jobgen W, Meininger CJ, Jobgen SC, et al. Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 2009; 139: 230-7. http://dx.doi.org/10.3945/jn.108.096362

Petrović V, Korać A, Buzadžić B, Korać B. The effects of L-arginine and L-NAME supplementation on redox-regulation and thermogenesis in interscapular brown adipose tissue. J Exp Biol 2005; 208: 4263-71. http://dx.doi.org/10.1242/jeb.01895

Korać A, Buzadžić B, Petrović V, et al. The role of nitric oxide in remodeling of capillary network in rat interscapular brown adipose tissue after long-term cold acclimation. Histol Histopathol 2008; 23: 441-50.

Korać A, Buzadžić B, Petrović V, Vasilijević A, Janković A, Korać B. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME. Folia Histochem Cytobiol 2008; 46: 103-9. http://dx.doi.org/10.2478/v10042-008-0015-6

Petrović V, Korać A, Buzadžić B, et al. Nitric oxide regulates mitochondrial re-modelling in interscapular brown adipose tissue: ultrastructural and morphometric-stereologic studies. J Microsc 2008; 232: 542-8. http://dx.doi.org/10.1111/j.1365-2818.2008.02132.x

Petrović V, Buzadžić B, Korać A, Vasilijević A, Janković A, Korać B. NO modulates the molecular basis of rat interscapular brown adipose tissue thermogenesis. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152: 147-59. http://dx.doi.org/10.1016/j.cbpc.2010.03.008

Vučetić M, Otašević V, Korać A, et al. Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: Interplay of HIF-1α and AMPKα. Biochim Biophys Acta 2011; 1810: 1252-61.

Khedara A, Goto T, Morishima M, Kayashita J, Kato N. Elevated body fat in rats by the dietary nitric oxide synthase inhibitor, L-N omega nitroarginine. Biosci Biotechnol Biochem 1999; 63: 698-702. http://dx.doi.org/10.1271/bbb.63.698

Piatti PM, Monti LD, Valsecchi G, et al. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care 2001; 24: 875-80. http://dx.doi.org/10.2337/diacare.24.5.875

Bogdanski P, Suliburska J, Grabanska K, et al. Effect of 3-month L-arginine supplementation on insulin resistance and tumor necrosis factor activity in patients with visceral obesity. Eur Rev Med Pharmacol Sci 2012; 16: 816-23.

Baron AD, Steinberg H, Brechtel G, Johnson A. Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Physiol 1994; 266: 248-53.

Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest 1995; 96: 786-92. http://dx.doi.org/10.1172/JCI118124

Petrie JR, Ueda S, Webb DJ, Elliott HL, Connell JM. Endothelial nitric oxide production and insulin sensitivity. A physiological link with implications for pathogenesis of cardiovascular disease. Circulation 1996; 93: 1331-3. http://dx.doi.org/10.1161/01.CIR.93.7.1331

Kobzik L, Stringer B, Balligand JL, Reid MB, Stamler JS. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun 1995; 211: 375-81. http://dx.doi.org/10.1006/bbrc.1995.1824

Bates TE, Loesch A, Burnstock G, Clark JB. Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Comm 1996; 218: 40-4. http://dx.doi.org/10.1006/bbrc.1996.0008

Ribiere C, Jaubert AM, Gaudiot N, et al. White adipose tissue nitric oxide synthase: a potential source for NO production. Biochem Biophys Res Commun 1996; 222: 706-12. http://dx.doi.org/10.1006/bbrc.1996.0824

Young ME, Leighton B. Evidence for altered sensitivity of the nitric oxide/cGMP signalling cascade in insulin-resistant skeletal muscle. Biochem J 1998; 329: 73-9.

Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 1997; 82: 359-63.

Roy D, Perreault M, Marette A. Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am J Physiol 1998; 274: 692-9.

Marliss EB, Chevalier S, Gougeon R, et al. Elevations of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of protein turnover. Diabetologia 2006; 49: 351-9. http://dx.doi.org/10.1007/s00125-005-0066-6

Higaki Y, Hirshman MF, Fujii N, Goodyear LJ. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 2001; 50: 241-7. http://dx.doi.org/10.2337/diabetes.50.2.241

Tanaka T, Nakatani K, Morioka K, et al. Nitric oxide stimulates glucose transport through insulin-independent GLUT4 translocation in 3T3-L1 adipocytes. Eur J Endocrinol 2003; 149: 61-7. http://dx.doi.org/10.1530/eje.0.1490061

Douen AG, Ramlal T, Rastogi S, et al. Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J Biol Chem 1990; 265: 13427-30.

Coderre L, Kandror KV, Vallega G, Pilch PF. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem 1995; 270: 27584-8. http://dx.doi.org/10.1074/jbc.270.46.27584

McConell GK, Huynh NN, Lee-Young RS, Canny BJ, Wadley GD. L-Arginine infusion increases glucose clearance during prolonged exercise in humans. Am J Physiol Endocrinol Metab 2006; 290: 60-6. http://dx.doi.org/10.1152/ajpendo.00263.2005

Young ME, Radda GK, Leighton B. Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochem J 1997; 322: 223-8.

Young ME, Leighton B. Fuel oxidation in skeletal muscle is increased by nitric oxide/cGMP-evidence for involvement of cGMP-dependent protein kinase. FEBS Lett 1998; 424: 79-83. http://dx.doi.org/10.1016/S0014-5793(98)00143-4

Salil G, Nithya R, Nevin KG, Rajamohan T. Dietary coconut kernel protein beneficially modulates NFκB and RAGE expression in streptozotocin induced diabetes in rats. J Food Sci Technol 2012; http://dx.doi.org/10.1007/s13197-012-0729-5

Monti LD, Valsecchi G, Costa S, et al. Effects of endothelin-1 and nitric oxide on glucokinase activity in isolated rat hepatocytes. Metabolism 2000; 49: 73-80. http://dx.doi.org/10.1016/S0026-0495(00)90763-7

Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116: 1776-83. http://dx.doi.org/10.1172/JCI29044

Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997; 273: 1107-12.

Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998; 47: 1369-73. http://dx.doi.org/10.2337/diabetes.47.8.1369

Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999; 48: 1667-71. http://dx.doi.org/10.2337/diabetes.48.8.1667

Zheng D, MacLean PS, Pohnert SC, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol 2001; 91: 1073-83.

de Castro Barbosa T, Jiang LQ, Zierath JR, Nunes MT. L-Arginine enhances glucose and lipid metabolism in rat L6 myotubes via the NO/ c-GMP pathway. Metabolism 2012; http://dx.doi.org/10.1016/j.metabol.2012.06.011

Winder WW, Wilson HA, Hardie DG, et al. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 1997; 82: 219-25.

Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 2000; 49: 896-903. http://dx.doi.org/10.2337/diabetes.49.6.896

Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167-74.

Zou MH, Kirkpatrick SS, Davis BJ, et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 2004; 279: 43940-51. http://dx.doi.org/10.1074/jbc.M404421200

Linden KC, Wadley GD, Garnham AP, McConell GK. Effect of L-arginine infusion on glucose disposal during exercise in humans. Med Sci Sports Exerc 2011; 43: 1626-34. http://dx.doi.org/10.1249/MSS.0b013e318212a317

Jobgen WJ. PhD Dissertation. Texas A&M University; 2007. Dietary L-arginine Supplementation Reduces Fat Mass in Diet-Induced Obese Rats.

Newsholme P, Keane D, Welters HJ, Morgan NG. Life and death decisions of the pancreatic beta-cell: the role of fatty acids. Clin Sci (Lond) 2007; 112: 27-42. http://dx.doi.org/10.1042/CS20060115

Nyblom HK, Sargsyan E, Bergsten P. AMP-activated protein kinase agonist dose dependently improves function and reduces apoptosis in glucotoxic beta-cells without changing triglyceride levels. J Mol Endocrinol 2008; 41: 187-94. http://dx.doi.org/10.1677/JME-08-0006

Downloads

Published

2013-01-04

How to Cite

Stancic, A., Korac, A., Buzadzic, B., Otasevic, V., Jankovic, A., Vucetic, M., & Korac, B. (2013). L-Arginine in Nutrition: Multiple Beneficial Effects in the Etiopathology of Diabetes. Journal of Nutritional Therapeutics, 1(2), 114–131. https://doi.org/10.6000/1929-5634.2012.01.02.3

Issue

Section

Articles