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Abstract: In this paper, we apply the Complete Analysis of Differentiable Games (introduced by D. Carfì in Topics in 
Game Theory (2012), Carfì ICT 2009, Carfì AAPP 2009, Carfì GO 2009; already employed by himself and others in Carfì 

TPREF 2011, Carfì AAPP 2010, Carfì ISGC 2009) and some new algorithms, using the software wxMaxima 11.04.0, in 
order to reach a total scenario knowledge (that is the total knowledge of the payoff space of the interaction) of the classic 
Cournot Duopoly (1838), viewed as a complex interaction between two competitive subjects, in a particularly interesting 

asymmetric case. Moreover, in this work we propose a theoretical justification, for a general kind of asymmetric 
duopolistic interactions (which often appear in the real economic world), by considering and proposing a Cobb-Douglas 
perturbation of the classic linear model of production costs. 
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1. INTRODUCTION 

The Cournot Duopoly is a classic oligopolistic 

market in which there are two enterprises producing 

the same commodity and selling it in the same market. 

In this classic model, in a competitive background, the 

two enterprises employ as possible strategies the 

quantities of the commodity produced. The main 

solutions proposed in economic and Game Theory 

literature (see for instance Aubin 1982, Aubin 1998, 

Dennis et al.) for this kind of duopoly are the Nash 

equilibrium (see also Carfì et al. AAPP 2009, Carfì 

SIMAI 2008, Carfì MPRA 29001, Carfì MPRA 28971) 

and the Collusive Optimum, without any subsequent 

critical exam about these two kinds of solutions (see, 

on the contrary, Carfì TPREF 2011, Carfì AAPP 2010, 

Carfì ICT 2009, Carfì ISGC 2009, Carfì AAPP 2009, 

Carfì GO 2009. The absence of any critical quantitative 

analysis is due to the relevant lack of knowledge 

regarding the set of all possible outcomes of this 

strategic interaction and in particular of the Pareto 

boundary of the problem (see also Carfì AAPP 2008). 

On the contrary, by considering the Cournot Duopoly 

as a differentiable game (normal form games with 

differentiable payoff functions) and studying it by the 

topological methodologies introduced in Game Theory 

by D. Carfì, we obtain an exhaustive and complete 

vision of the entire payoff space of the Cournot game 

(this also in asymmetric cases with the help of 

wxMaxima) and this total view allows us to analyze  

 

 

*Address correspondence to this author at the Department of Mathematics, 
University of California at Riverside, 900 Big Springs Road, Surge 231 
Riverside CA 92521, USA; Tel/Fax: + 39 090 362647; E-mail: dcarfi@unime.it 

JEL Classification: D7, C71, C72, C78. 

critically the classic solutions and to find other ways of 

action to select Pareto strategies, in the asymmetric 

cases too. In order to illustrate the applications of this 

topological methodologies to the considered infinite 

game, several compromise decisions are considered, 

and we show how the complete study gives a real 

extremely extended comprehension of the classic 

model. 

2. FORMAL DESCRIPTION OF A GENERALIZED 
COURNOT NORMAL FORM GAME 

Our model of Cournot game is a non-linear two-

players loss game G of type (f, >) (see also Carfì ICT 

2009, Carfì AAPP 2009 and Carfì GO 2009). The two 

players/enterprises are called Emil and Frances 

(following J.P. Aubin’s books 1982 and Aubin 1998). 

Assumption 1 (Strategy Sets). The two players 

produce and offer the same commodity in the 

quantities x   for Emil and y   for Frances. In 

more precise terms: the payoff function f of the game G 

is defined on a subset of the positive cone of the 

Cartesian plane 
2
, interpreted as a space of bi-

quantities. We assume (by simplicity) that the set of all 

strategies, of each player, is the interval E = [0, + ]. 

Assumption 2 (Asymmetry of the Game). The 

game G is not assumed necessarily symmetric with 

respect to the players. In other terms, the payoff pair 

f(x, y) is not assumed to be the symmetric of the pair 

f(y, x). 

Assumption 3 (Form of Price Function). We 

suppose the price function, p from 
2 

into , linear and 

defined by 
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p(x, y) = a – b1x – b2 y      (2. 1) 

for every productive bi-strategy (x, y), where a  0 is a 

fixed price and bi > 0 (i = 1,2) is the marginal coefficient 

corresponding to the production of the player i. 

Assumption 4 (Form of Cost Functions). Let the 

cost function C1 (defined on E
2
) of the first player be 

given by 

C1(x, y) = c1 x + e1xy + d,         (2. 2) 

for every positive price pair (x, y) and let, analogously, 

the demand function of the second enterprise be given 

by 

C2(x, y) = c2 y + e2 xy + d,     (2. 3) 

for every positive bi-strategy (x, y), where c = (c1, c2) > 

0 is the pair of marginal costs and where the number d 

 0 is the fixed cost.  

Modeling Axiom. So, we consider a Cobb-Douglas 

perturbation of the classic linear costs. 

This kind of modeling should be explained from an 

economic point of view. 

The economic interpretation is the following:  

- our model represents those economic duopolies 

in which the production of any player may also 

influence the production cost of the other player; 

- if ei is negative, our model represents those 

economic duopolies in which a combined 

production of the same good, by the two actors, 

determines a positive effect upon the costs (that 

is, it determines a decrease in costs, thanks to 

virtuous effects on the improvement of 

technologies or in obtaining raw materials), 

especially for positive effects on research and 

development of new methods of production. 

Effects that, often (or almost always), are evident 

in the most of economic sectors. 

Assumption 5 (Payoff Functions). Setting 

wi := a – ci, 

the first player’s net cost function is defined, classically, 

by the revenue 

ƒ1(x, y) = C1(x, y) - p(x, y)x = 

            = c1 x + e1xy + d - (ax - b1x 
2
 - b2 xy) = 

            = x(b1x + (b2 + e1)y - (a - c1)) + d =   (2. 4) 

            = x(b1x + (b2 + e1)y - w1)+d = 

            = w1 x ((b1/w1)x + ((b2 + e1)/w1)y -1) + d,  

for every positive bi-strategy (x, y). 

Symmetrically, for Frances, the net cost function is 

defined by 

ƒ2(x, y) = C2(x, y) - p(x, y)y = 

            = y((b1 + e2)x + b2y – (a – c2)) + d =   (2. 5) 

            = y((b1 + e2)x + b2y – w2) + d = 

            = w2y((b1 + e2)/w2)x + (b2/w2)y – 1) + d,  

for every positive bi-strategy (x, y). 

3. STUDY OF THE COURNOT’S NORMAL FORM 
GAME 

In the following we shall study the following 

particular case. We shall put: 

w2 = w1 = 1; b1 = 2; e2 = - 1; b2 = 1; e1 = 0, 

so that, the bi-loss function is defined by 

ƒ(x, y) = (x(2x + y - 1), y(x + y - 1)) + (d, d), 

for every bi-strategy (x, y) of the game in the 

unbounded square E
2
. 

Remark. Similar examples, of asymmetric 

duopolies, are already considered by Vannoni and 

Piacenza, in some practical applications and - in 

general - in Dennis; the authors do not justify the form of 

the payoff functions. We justify the asymmetric form by 

using our Cobb-Douglas perturbation of the classic cost 

function, which implies a decrease in costs, given by 

the positive effect of new technologies (or 

methodologies) for the production of the good and for 

the use and finding of the raw materials for the 

productions. 

Payoff Vector-Function. When the fixed cost d is 

zero (this assumption determines only a “reversible” 

translation of the loss space), the bi-loss function ƒ 

from the compact square [0,1]
2
 into the bi-loss plane 

2 

is defined by 

ƒ(x, y) = (x(2x + y - 1), y(x + y - 1)),     (3. 1) 
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for every bi-strategy (x, y) in the square S = [0, 1]
2
, 

which is the convex envelope of its vertices, denoted 

by A, B, C, D starting from the origin and going 

anticlockwise. 

 

Figure 1: The graphical representation of the Cournot payoff 
function f in the space R

3
, with respect to an orthonormal 

basis. 

 

 

Figure 2: The graphical representation of the Cournot payoff 
function f in the space R

3
, with respect to an orthonormal 

basis. 

Critical Space of the Game. Now, we must find the 

critical space of the game and its image by the function 

ƒ, before representing ƒ(S). We determine (as 

explained in Carfì’s Topics in Game Theory (2012), 

Carfì ICT 2009, Carfì AAPP 2009 and Carfì GO 2009) 

firstly the Jacobian matrix of the function ƒ at any point 

(x, y)  S - denoted by Jƒ(x, y). We will have, in vector 

form, the pair of gradients 

Jƒ(x, y) = ((y+4x-1, x), (y, 2y+x-1)),     (3. 2) 

and concerning the determinant of the above pair of 

vectors 

det Jƒ(x, y) = (y+4x-1)(2y+x-1)-xy = 

                  = 2y
2
 + 8xy – 3y + 4x

2
 – 5x + 1.   (3. 3) 

 

Figure 3: The graphical representation of the Jacobian 
determinant of payoff function f. 

The Jacobian determinant is zero at those points 

(x1, y1) and (x2, y2) of the strategy square such that 

y1 = -(1/4) (32x1
2
-8x1+1)

1/2 
- 2x1+

3
/4     (3. 4) 

or  

y2 = (1/4) (32x2
2
-8x2+1)

1/2 
- 2x2+ 

3
/4.     (3. 5) 

We obtain two curves (Figure 4) whose union is the 

critical zone of Cournot Game. 

4. TRANSFORMATION OF THE STRATEGY SPACE 

It is readily seen that the intersection points of the 

green curve with the boundary of the strategic square 

are the point K = (
2
/8, 0). 

Remark 

The point K is the intersection point of the green 

curve with the segment [A, B], its abscissa  verifies 

the non-negative condition and the following equation 

(32 1
2
 – 8 1 + 2)

 1/2
 = 3 - 8 1,     (4. 1) 

this abscissa is so 1 = 
2
/8 . 
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Figure 4: Critical zone of Cournot game. 

The point H is the intersection point between the 

ordinate axis and the critical part  

y1 = - (1/4) (32x1
2 

- 8x1+1)
1/2 

- 2x1 + 
3
/4. 

We start from Figure 4. The transformations of the 

bi-strategy square vertices and of the points H, K are 

the following: 

A' = ƒ(A) = ƒ(0, 0) = (0, 0); 

B' = ƒ(B) = ƒ(1, 0) = (1, 0); 

C' = ƒ(C) = ƒ(1, 1) = (2, 1); 

D' = ƒ(D) = ƒ(0, 1) = (0, 0); 

H' = ƒ(H) = ƒ(0, 
1
/2) = (0, -

1
/4); 

K' = ƒ(K) = ƒ(
2
/8, 0) = (-

1
/8, 0). 

Starting from Figure 4, with S = [0, 1]
2
, we can do 

the transformation of its sides. 

Side [A, B]. Its parameterization is the function 

sending any point x  [0, 1] into the point (x, 0); the 

transformation of this side can be obtained by 

transformation of its generic point (x, 0), we have 

ƒ(x, 0) = (2x
2
 - x, 0).      (4. 2) 

We obtain the segment with end points K' and B', 

with parametric equations 

X = 2x
2
 - x and Y = 0,      (4. 3) 

with x in the unit interval. 

Side [B, C]. Its parameterization is  

(x = 1, y  [0, 1]); 

the figure of the generic point is 

ƒ(1, y) = (y + 1, y
2
).      (4. 4) 

We can obtain the parabola passing through the 

points B', C' with parametric equations 

X = y + 1 and Y = y
2
.      (4. 5) 

Side [C, D]. Its parameterization is 

(x  [0, 1], y = 1); 

the transformation of its generic point is 

ƒ(x, 1) = (2x
2
, x).      (4. 6) 

We obtain the parabola passing through the points 

D', C' with parametric equations 

X = 2x
2
 and Y = x,      (4. 7) 

with x in the unit interval. 

Side [A, D]. Its parameterization is 

(x = 0, y  [0, 1]); 

the transformation of its generic point is 

ƒ(0, y) = (0, y
2
 - y).      (4. 8) 

We obtain the segment with end points A' and H', 

with parametric equations 

X = 0 and Y = y
2
 - y.      (4. 9) 

Now, we find the transformation of the critical zone. 

The parameterization of the critical zone is defined by 

the equations 

y1 (x) = -(1/4) (32x
2 

- 8x+1)
1/2 

- 2x + 
3
/4,1 

and 

y2 (x) = (1/4) (32x
2
-8x+1)

1/2
-2x + 

3
/4. 2 

The parametrization of the green zone is 

(x  [0, 1], y = y1 (x)); 

                                            

1
Equation 3.4 pag. 3. 

2
Equation 3.5 pag. 3. 



198     Journal of Reviews on Global Economics, 2013 Vol. 2 Carfì and Perrone 

the transformation of its generic point is 

ƒ(x, y1) = (x(2x+y1-1), y1(x+y1-1)),    (4. 10) 

a parametrization of the yellow zone is (x  [0, 1], y = 

y2); the transformation of its generic point is 

ƒ(x, y2) = (x(2x+y2-1), y2(x+y2-1)).   (4. 11) 

The transformation of the green zone is determined 

by formulas 

X = x (-(1/4) (32x
2 

- 8x+1)
1/2 

- 
1
/4)    (4.12) 

and 

Y = (-0.25(32x
2 

- 8x + 1)
1/2 

- 2x + 
3
/4)(- 0.25 (32x

2 
-  

8x + 1)
1/2 

- x -
1
/4),     (4. 13) 

and the transformation of the yellow zone is determined 

by formulas 

X = x((1/4) (32x
2
-8x+1)

1/2 
- 

1
/4)    (4. 14)  

and 

Y = (0.25(32x
2 

- 8x + 1)
1/2 

- 2x + 
3
/4)(0.25(32x

2 
- 8x  

+ 1)
1/2 

- x - 
1
/4).      (4. 15) 

We have two colored curves in green and black 

(Figure 5). The black curve is break by a point of 

discontinuity T obtained by resolving the following 

equation 

x ((1/4) (32x
2
 – 8x + 1)

 1/2
 - 

1
/4 ) = 0;    (4. 16) 

the solutions of the above equation are 

x1 = 
1
/4, x2 = 0,     (4. 17) 

and, replacing them in the parametrical equations of 

the critical zone (4.15) we obtain T1 = 0 and T2 = - 
1
/8 

 

Figure 5: Payoff space of Cournot game. 

 

Figure 6: Extrema of the Asymmetric Cournot game. 
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5. NON-COOPERATIVE FRIENDLY PHASE 

Examining the Figure 5 we note that the game has 

two extremes: the shadow minimum  = (-
1
/8, -

1
/4) and 

the maximum  = C = (2, 1). The Pareto minimal 

boundary of the payoff space ƒ(S) is the curve passing 

through the points K' and H' colored in green showed in 

the Figure 6. The Pareto maximal boundary of the 

payoff space ƒ(S) coincides with the maximum  = C'= 

(2, 1). Both Emil and Frances do not control the Pareto 

minimal boundary; they could reach the point K' and H' 

of the boundary, but the solution is not satisfactory for 

them. In fact, a player will suffer the maximum loss. 

Remark. Comparing the Figure 6 with the Figure 7 

we may observe that the benefit to the community 

decreases in case of asymmetry; in fact the area 

contained in the first quadrant is greater than in the 

symmetric case and the area contained in the third 

quadrant is smaller than in the symmetric case. In other 

terms, when the Cournot duopoly becomes an 

asymmetric games is easier to have a loss. 

6. PROPERLY NON-COOPERATIVE (EGOISTIC) 
PHASE 

Now, we will consider the best reply 

correspondences between the two players Emil and 

Frances. If Frances produces the quantity y of the 

commodity, Emil, in order to reply rationally, should 

minimize his partial cost function 

ƒ1(·, y) : x  x(2x + y - 1),     (6. 1) 

on the compact interval [0,1]. According to the 

Weierstrass theorem, there is at least one Emil’s 

strategy minimizing that partial cost function and, by 

Fermàt theorem, the Emil’s best reply strategy to 

Frances’ strategy y is the only quantity 

B1(y) = x* := (1/4) (1 - y).     (6. 2) 

Indeed, the partial derivative 

ƒ1(·, y)'(x) = 4x + y - 1,      (6. 3) 

is negative for x < x* and positive for x > x*. So, the 

Emil’s best reply correspondence is the function B1 

from the interval [0, 1] into the interval [0, 1], defined by 

y  
1
/4(1 - y). If Emil produces the quantity x of the 

commodity, Frances, in order to reply rationally, should 

minimize his partial cost function 

ƒ2(x, ·) : y  y(x + y - 1),     (6. 4) 

on the compact interval [0, 1]. According to the 

Weierstrass theorem, there is at least one Frances’ 

strategy minimizing that partial cost function and, by 

Fermàt theorem, the Frances’ best reply strategy to 

Emil’s strategy x is the only quantity 

B2(x) = y* := 
1
/2(1 - x).      (6. 5) 

Indeed, the partial derivative 

ƒ2(x, ·)'(y) = 2y + x - 1,      (6. 6) 

is negative for x < x* and positive for x > x*. So, the 

Frances’ best reply correspondence is the function B2 

 

Figure 7: Extrema of the Symmetric Cournot game. 
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from the interval [0, 1] into the interval [0, 1], defined by 

x  
1
/2(1 - x). The Nash equilibrium is the fixed point of 

the multifunction B - associated with the pair of two 

reaction functions (B2, B1) - defined from the Cartesian 

product of the domains into the Cartesian product of 

the codomains (in inverse order), by B : (x, y)  (B1(y), 

B2(x)), that is the only bi-strategy (x, y) such that 

x = (
1
/4)(1 - y) and y = 

1
/2(1 - x),      (6. 7) 

that is the point N = (
1
/7, 

3
/7) - as we can see also from 

Figure 8 - which gives a bi-loss N' = (-
2
/49, -

9
/49), as 

Figure 9 will show. The Nash equilibrium is not 

completely satisfactory, because it is not a Pareto 

optimal bi-strategy, but it represents the only properly 

non-cooperative game solution. 

 

Figure 8: Nash Equilibrium of Cournot game. 

7. DEFENSIVE AND OFFENSIVE PHASE 

Players’ conservative values are obtained through 

their worst loss functions. 

Worst loss functions. On the square S = [0, 1]
2
, 

Emil’s worst loss function is defined by 

ƒ
#
1(x) = supy  F x (2x + y - 1) = 2x

2
,     (7. 1) 

its minimum will be 

v
#
1 = inf x  E (ƒ

#
1(x)) = infx  E 2x

2
 = 0,     (7. 2) 

attained at the conservative strategy x
#
 = 0. 

Frances’ worst loss function is defined by 

ƒ
#
2(y) = supx  E y (x + y - 1) = y

2
, (7. 3) 

its minimum will be  

v
#
2 = infy  F ƒ

#
2( y ) = infy  F y

2
 = 0     (7. 4) 

attained at the unique conservative strategy y
#
 = 0. 

Conservative bivalue. The conservative bivalue is 

v
#
 = (v

#
1, v

#
2) = (0, 0). 

The worst offensive multi-functions are 

determined by the study of the worst loss functions. 

The Frances’ worst offensive reaction multifunction 

O2 is defined by O2(x) = 1, for every Emil’s strategy x; 

indeed, fixed an Emil’s strategy x the Frances’ strategy 

1 maximizes the partial cost function ƒ1(x, .). The Emil’s 

 

Figure 9: Payoff at Nash equilibrium of Cournot game. 
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worst offensive correspondence versus Frances is 

defined by O1(y) = 1, for every Frances’ strategy y. 

The dominant offensive strategy is 1 for both 

players, indeed the offensive correspondences are 

constant.  

The core of the payoff space (in the sense 

introduced by J.P. Aubin) is the Pareto minimal 

boundary, contained in the cone of lower bounds of the 

conservative bi-value v
#
; the conservative bi-value 

don’t give us a bound for the choice of cooperative bi-

strategies. 

The defensive knot of the game is the point (0,0). 

8. COOPERATIVE PHASE  

When there is an agreement between the two 

players, the best compromise solution (in the sense 

introduced by J.P. Aubin) showed graphically in the 

Figure 10. 

Besides, the best compromise solution coincides 

with the core best compromise, with the Nash 

bargaining solution, with the Kalai-Smorodinsky 

bargaining solution. It coincides also with the 

transferable utility solution which is the unique Pareto 

strategy that minimized the aggregate utility function  

f1 + f2, this can be easily viewed by geometric 

evidences considering on the payoff universe the levels 

of that aggregate function, which are affine lines 

parallel to the vector (1, -1). 
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