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Abstract: Electric power is the main energy source for a modern society. Good management of electric power cycle is 
essential for a sustainable society. The electric power cycle is composed of Generation, Transmission, Distribution, and 
Consumption. Smart Grid (SG) is a system that integrated traditional grids with Information and Communication 
Technology (ICT). In addition, SG has the ability to integrate electrical power supply from both to main power substation 
and Distributed Generation (DG), which compensates for the power demand during peak times. However, SG still has a 
similar problem to the original grid in terms of active power loss, from electric current injecting through the transmission 
line. This paper solves the active power loss problem by feeder routing using the Adjusting Dijkstra’s Cost Method, follow 
by deciding the allocation position and sizing of DG by the use of Evolutionary Computing, namely Harmony Search 
(HS), Artificial Bee Colony (ABC), and Particle Swarm Optimization (PSO). The experiments evaluate the performance of 
the algorithm using power flow analysis, Backward / Forward Sweep Method, on the IEEE 33 bus system. From the 
experimental results, PSO provides the best performance. The overall active power loss in the cases of 3 DGs was 
reduced from 202.67 to 52.29 kW, representing a reduction of 74.20%. 

Keywords: Minimal active power loss, Backward / Forward Sweep Method, Harmony Search, Artificial Bee Colony, 
Particle Swarm Optimization. 

1. INTRODUCTION 

A smart electricity system, such as a Smart Grid 
(SG) system, is required in order to efficiently serve 
higher power demand. The SG is an integration 
between a traditional grid and Information and 
Communication Technology (ICT). SG covers from the 
processes of Generation, Transmission, Distribution, to 
Consumption. In addition, from power plant electric 
sourcing, SG must be able to manage an extra power 
source from a Distributed Generation (DG). Although 
the SG distribution has more advanced information, it 
still suffers from the same problem as the traditional 
grid, namely active power loss, that affects the 
electrical power transfer directly. The problem above 
was leading to significant funds to improve the 
distribution line, distribution transformer, and substation 
building to accommodate active power loss (Huang et 
al., 2014). 

In related research, the defined radial distribution 
feeder routing with Dijkstra’s algorithm reduces the 
fixed cost, energy cost, and interruption cost (Jha and 
Vidyasagar, 2013). In DG allocation and sizing, 
Harmony Search (HS) was used to solve the problem. 
The objective was to allocate DG such that the voltage 
profile of the overall system is stable. The experiments  
 

 

*Address of correspondence to this author at the College of Innovative 
Technology and Engineering, Dhurakij Pundit University, Bangkok, Thailand; 
Tel: +66 2954-7300; Fax: +66 2954-7356; E-mail: narongdech.ken@dpu.ac.th 
JEL: C53, C55, C61, Q21. 

using the IEEE 33 bus and IEEE 69 bus system 
compared the results with the Genetic Algorithm (GA) 
and Refine Genetic Algorithm (RGA). The results 
showed HS was the most efficient in term of processing 
time (Rao et al., 2013). The Particle Swarm 
Optimization (PSO) was used to determine the 
allocation and sizing of the DG to reduce the active 
power loss. In the experiments with the IEEE 33 bus 
system, the results reduced active power loss by 
determining the allocation and sizing of the DG 
appropriately (Guerriche and Boktir, 2015). The 
Artificial Bee Colony (ABC) was successfully applied to 
minimize the active power loss with the IEEE 33 bus 
and IEEE 69 bus system. The results in the modified 
ABC can reduce processing time and number of 
iterations in the process (Fahad and Mohamed, 2009). 

In order to minimize active power loss, this paper 
selects the IEEE 33 bus system and processes with 
feeder routing. After defined the routing path, the DG 
allocation and sizing was used to compare the 
techniques of HS, ABC, and PSO. The overall solutions 
are shown in Figure 1. 

2. PROPOSED METHODOLOGY 

2.1. Topology Model 

The IEEE 33 bus system is used as experimental 
data in this paper (Baran and Wu, 1989). The structure 
is composed of two main parts, nodes and branches. 
Node (in power electric distribution called node as a
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Figure 1: Overview of Solution. 

 

 

 
Figure 2: IEEE 33 Bus System. 
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Table 1: IEEE 33 Bus Data  

Sending 
Bus 

Receiving 
Bus ( i ) 

Active Power 
(kW) ( Pi ) 

Reactive Power 
(kVAR) ( Qi ) 

Resistance 
(Ohm) ( Ri ) 

Reactance 
(Ohm) ( Xi ) 

1 2 100 60 0.0922 0.0470 

2 3 90 40 0.4930 0.2511 

3 4 120 80 0.3660 0.1864 

4 5 60 30 0.3811 0.1941 

5 6 60 20 0.8190 0.7070 

6 7 200 100 0.1872 0.6188 

7 8 200 100 1.7114 1.2351 

8 9 60 20 1.0300 0.7400 

9 10 60 20 1.0440 0.7400 

10 11 45 30 0.1966 0.0650 

11 12 60 35 0.3744 0.1238 

12 13 60 35 1.4680 1.1550 

13 14 120 80 0.5416 0.7129 

14 15 60 10 0.5910 0.5260 

9 15 60 10 2.0000 2.0000 

15 16 60 20 0.7463 0.5450 

16 17 60 20 1.2890 1.7210 

17 18 90 40 0.7320 0.5740 

2 19 90 40 0.1640 0.1565 

19 20 90 40 1.5042 1.3554 

20 21 90 40 0.4095 0.4784 

8 21 90 40 2.0000 2.0000 

21 22 90 40 0.7089 0.9373 

12 22 90 40 2.0000 2.0000 

3 23 90 50 0.4512 0.3083 

23 24 420 200 0.8980 0.7091 

24 25 420 200 0.8960 0.7011 

6 26 60 25 0.2030 0.1034 

26 27 60 25 0.2842 0.1447 

27 28 60 20 1.0590 0.9337 

28 29 120 70 0.8042 0.7006 

25 29 120 70 0.5000 0.5000 

29 30 200 600 0.5075 0.2585 

30 31 150 70 0.9744 0.9630 

31 32 210 100 0.3105 0.3619 

32 33 60 40 0.3410 0.5302 

18 33 60 40 0.5000 0.5000 

 

bus) can be further grouped into power source (slack 
bus) and consumption unit (load bus) represented by a 
circle, as shown in Figure 2. The branch is represented 

by the directed line showing a flow in the power 
system. The main characteristics for each bus were 
composed of two static variables, Active Power (Pi )  
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measured in Watt and Reactive Power (Qi )  the unit as 
VAR. The two main characteristics of branches are 
Resistance (Ri )  and Reactance (Xi )  the unit as Ohm, 
as shown in Table 1.  

2.2. Adjusting Dijkstra’s Cost Method 

Dijkstra’s algorithm had been determined to choose 
the shortest path from a source bus to a destination. 
The shortest distance was calculated from the explicit 
cost in the graph. For the power routing, when the 
route changed, the voltage and current implied 
changed accordingly. Therefore, the power routing 
remained difficult to determine the routing cost. As a 
result, the feeder routing still has a trouble in finding the 
exact current used as a weight to each edge in the 
graph. 

This paper devises a feeder routing method with 
Dijkstra’s algorithm for determining the cost to solve the 
problem. The method has the ability to adjust cost 
according to the direction of the power flow, where cost 
is calculated from the power flow method. The 
calculation is repeated until the power variables are 
stable. The step of Adjusting Dijkstra’s Cost Method, as 
shown in Figure 3, was composed of: 

Step (1): Calculate routing cost. Define the initial 
values of IKCL ,i,t  equal to ! , and calculate the weight, 
current, in the graph as: 

Ci,t = tan
!1 IKVL ,i,t

2 " Xi

IKVL ,i,t
2 " Ri

,           (1) 

where Ci,t  is the cost of the branch, connecting two 
nodes, where i  represents in flow current of bus 
number i  at time t , which is calculated by the arctan 
of the ratio between IKVL ,i,t

2 ! Xi and IKVL ,i,t
2 ! Ri .  

Step (2): Dynamic feeder routing process 
(Dijkstra’s algorithm). Dijkstra’s algorithm was 
modified by separation for routing as the process: 

(2.1) Finds the shortest path with Dijkstra’s 
algorithm, the process of finding the shortest path from 
one source to all destinations. 

(2.2) Cuts duplicate branches by cutting the 
overlapping branches. 

(2.3) Eliminates the multi-source bus by selecting 
the bus with the lowest total cost to the source bus, 
with others cut off. 

 
Figure 3: Adjusting Dijkstra’s Cost Method. 
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(2.4) Moves the end bus to compare active power 
loss so the results can be separated into two cases. If 
the bus is moved and active power loss is reduced, 
(2.4.1) moves the end bus to the minimal active power 
loss source bus. Recursive analysis of the process 
(2.3) until active power loss cannot be minimized 
further. The final result is called the Adjusting Dijkstra’s 
Cost path (2.4.2). 

Step (3): Power flow analysis. The power flow 
parameters calculate the new current in time period 
t +1 , in terms of IKCL ,i,t+1  for the purpose of adjusting 
the new cost in terms of Ci,t+1 . 

Step (4): Compare routing cost between Ci ,t+1  
and Ci ,t .  In the comparison, if the tolerance is greater 
than or equal to 0.0001, go to step (4.1), otherwise go 
to step (4.2). 

(4.1) The cost is adjusted by Ci,t+1  and is repeated 
from the second step.  

(4.2) The result will be the lower active power loss 
path with the right cost. In the process, update the new 
cost so that the improvement will replace the higher 
cost. According to Dijkstra’s algorithm, routing to the 
lowest cost, the branches will be chosen and the cost is 
improved. The shortest path is defined as the actual 
cost. 

2.3. Problem Formulation 

As the active power loss depends on the current 
that is injected through the branch, as calculated by 
Ohm’s Law, the installation of DG changes the active 
power and the current. Accordingly, the objective 
function the active power loss, is defined as follows: 

Minimize IKCL ,i
2

i=1

n
! Ri ,           (2) 

where IKCL ,i  is the current (Ampere) of the branch that 
is injected into bus number i , which can be calculated 
by the power flow method, and Ri  is the resistance of 
the branch that flows into bus number i . The 
constraints in the experiment are included as the 
parameters of the bus and branch that are composed 
of current, voltage, active power, reactive power, and 
appearance power: 

IKCL ,i,t+1 ! Ii
max ,            (3) 

Vi
min !VKVL ,i !Vi

max ,           (4) 

where IKCL ,i  is the current (Ampere) that is limited to 
not more than IMAX ,i ,  under the condition of the 
maximum current flow in conductor type in branch i . 
The voltage level of the bus must not be at a higher or 
lower voltage limit, and the lower and upper limits of 
the voltage security range are set to be 0.90 and 1.05 
per-unit (p.u.) value. (Alafnan et al., 2016). VKVL ,i  is the 
voltage (Volt) in bus number i , with value not less than 
Vi

min  and not more than Vi
max . The active power and 

reactive power produced from DG must be the limit of 
the bus. The constraints are shown follows: 

PDG ,i
min ! PDG ,i ! PDG ,i

max ,           (5) 

QDG ,i
min !QDG ,i !QDG ,i

max ,           (6) 

where PDG ,i  is the active power (Watt) in bus number i  

that supplies power in the range PDG ,i
min  and PDG ,i

max . 
Similarly, QDG ,i  is the reactive power (VAR) in bus 

number i  that supplies power in the range QDG ,i
min  and 

QDG ,i
max  Moreover, the appearance power must not 

exceed the power requirement in all buses, which can 
be shown as:  

PDG ,i
2 +QDG ,i

2

i=1

i
! " PLoad ,i

2 +QLoad ,i
2 ,

i=1

i
!         (7) 

where equation (7) represents that all the appearance 
power generated from DG must not be more than the 
all required appearance power on the bus. 

3. SIMULATION RESULTS 

The experiment to minimize active power loss was 
divided into two steps. The first was feeder routing with 
Adjusting Dijkstra’s Cost method, and the second is the 
DG allocation and sizing with Evolutionary Computing. 
The Evolutionary Computing methods, HS, ABC, and 
PSO are compared. The standard model, the IEEE 33 
bus system, was chosen and defined, the voltage base 
was 12.66 kV, and the apparent power base was 10 
MVA. 

3.1. Feeder Routing with Adjusting Dijkstra’s Cost 
Method 

The accuracy in the calculation of active power loss 
can be verified by routing by opening the tie switches 
between buses 8-21, 9-15, 12-22, 18-33, and 25-29. All 
the active power and reactive power were equal to 
3,715.00 kW and 2,300.00 kVAR, respectively. In the 
test of routing with the base path, the power loss was 
202.67 kW, and as accurate as other available results 
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(Abdel-Akher, 2013; Esmaeilian and Fadaeinedjad, 
2015; Jena and Chauhan, 2016). After verifying the 
accuracy, the next step was Adjusting Dijkstra’s Cost 
method. The feeder routing can be routed to the lower 
active power path with adjusted Ci,t  in 4 iterations. The 
topology form the lower active power loss path was 
changed by opening the switch between buses 7-8, 9-
10, 14-15, 25-29 and 32-33. The results show that the 
decision of Adjusting Dijkstra’s Cost method has 
reduced active power loss to 139.56 kW, as shown in 
Figure 4.  

3.2. DG Allocation and Sizing 

In this part, three evolutional algorithms, HS, ABC, 
and PSO, are used as the technique to solve the DG 
allocation and sizing challenge. The initial topology was 
obtained from the Adjusting Dijkstra’s Cost path result, 
as explained in the previous section. The number of 
load buses in the graph, 32 in this case, were used as 
the problem dimension. The analysis consisted of 4 
cases, Case-I: 1 DG with the maximum supply 
1,000.00 kW; Case-II: 1 DG with maximum supply 
2,000.00 kW; Case-III: 2 DGs with maximum supply 
1,000.00 kW; and Case-IV: 3 DGs with maximum 
supply 1,000.00 kW. At the first stage, Case-I and 
Case-II were used to compare the results to find the 
appropriate method between HS, ABC, and PSO 
(Aswini and Seshu, 2016; Priya and Reddy, 2013; 
Farhadi et al., 2013).  

The parameters of the HS were composed of: 
Vector of Harmony Size (HMS) was 32, Harmony 
Memory (HM) was 30, Harmony Consideration Rate 

(HCR) was 0.9, Pitch Adjust Rate (PAR) was 0.3, and 
Bandwidth (bw) = 0.01. The parameters of the ABC 
were set as follows: the nectar source was 32, scout 
bees were 70, employed bees were 35, and onlooker 
bees were 35. Similarly, the parameters of the PSO 
were composed of the problem dimensions equal to 32, 
the inertia weight equal to 0.3, the swarm size equal to 
100, and the learning factors a1 and a2 equal to 1.5. 

All the methods were processed until the 
termination condition was found. The best cost does 
not change more than the tolerance, 0.0001, in the 
100-previous rounds. The experimentation for each 
case was repeated 10 times. The results from each 
algorithm was compared using many criteria, including 
power loss (best cost), bus allocation, DG sizing, 
optimal iterations, and optimal processing time. The 
results were compared in terms of the mean and 
standard deviation (! ) values, are shown Table 2. 

In Case-I, all methods connected DG on bus 30. 
The HS defined the mean active power nearly optimal 
capacity (1,000.00 kW), while ABC and PSO can be 
implemented to the maximum DG capacity. In terms of 
reducing active power loss, ABC and PSO can reduce 
active power loss equal to 92.68 kW (! =0.0000). The 
HS reduced the mean active power loss to 93.15 kW 
(! =0.4443). The optimal iteration and processing time 
of HS had average 82.33 cycles (! =14.3233) and 
7.08 seconds (! =1.2501), respectively. The results 
from the ABC and PSO were similar. The active power 
losses in both algorithms were optimal, with best cost 
at 92.68 kW (! =0.0000), and DG sizing presented as 
1,000.00 kW (! =0.0000). 

 
Figure 4: Adjusting Dijkstra’s Cost Path. 
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Table 2: Comparison of HS, ABC, and PSO 

Algorithms 

HS ABC PSO Indicators 

Mean !  Mean !  Mean !  

Case-I: DG allocation bus [30] 

Power loss (kW) 93.15 0.4443 92.68 0.0000 92.68 0.0000 

DG sizing (kW) 985.35 13.1325 1000.00 0.0000 1000.00 0.0000 

Optimal iteration (cycles) 82.33 14.3233 3.56 1.4181 2.00 0.0000 

Optimal processing time (seconds) 7.08 1.2501 11.84 4.5420 1.59 0.0564 

Case-II: DG allocation bus [25] 

Active power loss (kW) 85.41 0.1835 84.97 0.0000 84.97 0.0000 

DG sizing (kW) 1,911.07 51.0407 1762.36 0.0000 1762.36 0.0000 

Optimal iteration (cycles) 4.06 26.6352 82.67 17.9010 42.33 8.6127 

Optimal processing time (seconds) 47.44 2.2555 318.75 69.9454 42.00 7.7876 

 

   
Figure 5: Optimal Iteration and Processing Times, Case-I and Case-II. 

In Case-II, all methods install DG on bus 25. DG 
sizing was not the maximum capacity to make the 
voltage profile at the bus meet the minimum active 
power loss. DG sizing in the HS gives 1,911.07 kW 
(! =51.0407), while the ABC and PSO could achieve 
1,762.36 kW (! =0.0000). In terms of active power loss 
reduction, the ABC and PSO can improve both cases 
equal to 84.97 kW (! =0.0000). In term of the optimal 
iteration and processing time, the PSO had the best 

performance at 42.00 seconds (! =7.7876), as shown 
in Figure 5. 

In contrast, the ABC and PSO had better results in 
processing, especially PSO. In the first section, the 
PSO had the best performance. In the second 
experimental section, only PSO is selected in the 
Case-III and Case-IV. The empirical model was based 
on the previous parameter values of tolerance and the 
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Table 3: Results of Experiments with PSO, Case-III and Case-IV 

Case-III: 
DG allocation buses 

[8 30] 

Case-IV: 
DG allocation buses 

[8 24 31] Performance indicators 

Mean !  Mean !  

Active power loss (kW) 70.56 0.0000 52.29 0.0000 

DG sizing (kW) [920.74 1000.00] - [899.42 994.48 962.50] - 

Optimal iteration (cycles) 45.56 7.3492 69.78 10.4350 

Optimal time (seconds) 48.34 9.9009 71.79 10.3602 

Active power loss (kW) 70.56 0.0000 52.29 0.0000 

 

   
Figure 6: Optimal Iteration and Processing Time with PSO. 

number of required iterations. The experiment was 
conducted 10 times, with results as shown in Table 3. 

In Case-III, DG was installed in buses 8 and 30, 
with total sizing of 920.74 and 1,000.00 kW. The mean 
active power loss was 70.56 kW (! =0.0000). In terms 
of the processing performance, the number of optimal 
iterations and processing time were 45.56 cycles 
(! =7.3492) and 48.34 seconds (! =9.9009), 
respectively, as shown in Figure 6. 

In the final Case-IV, the results showed the DG 
allocation will be installed in buses 8, 24 and 31, with 
sizing 899.42, 994.48, and 962.50 kW, respectively. 
The active power loss was reduced to 52.29 kW 
(σ=0.0000). In terms of efficiency, the optimal iteration 
and processing time were 69.78 cycles (! =10.4350) 
and 71.79 seconds (! =10.3602), respectively. 

In comparison, the results in Case-III and Case-IV 
determined the allocation and sizing exactly. In 
contrast, the value of the optimal iterations and 
processing time were not stable, due to the σ value. In 
addition to defining the objective function, minimizing 
active power loss can be achieved effectively. In the 

best case, the process of feeder routing and 
optimization of the DG allocation, and sizing in Case-
IV, the active power loss was reduced from 202.67 to 
52.29 kW, representing 74.20%. 

The steps of minimal active power loss from feeder 
routing were reduced to 139.56 kW, with DG allocation 
and sizing by PSO reduced to 52.29 kW, as shown in 
Figure 7. The results of minimal active power loss can 
also reduce the overall power consumption. The 
methods with a reduction of power loss also reduced 
the maximum power generation capacity from 
renewable energy. 

4. CONCLUSION 

The paper analyzed active power loss problems, 
and found a variety of possible solutions. The solution 
of feeder routing with Adjusting Dijkstra’s Cost method, 
consequently DG allocation and sizing with PSO, also 
reduced the active power loss. The approach of feeder 
routing with Dijkstra’s algorithm can be applied to 
adjusted cost in the concept of dynamics to match real 
power flows. After adjusting the cost, the 
experimentation was reconfigured as feeder topology 
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to improve performance. Consequently, DG allocation 
and sizing was conducted by Evolutionary Computing 
for reducing active power loss.  

The experiments found that PSO could determine 
the proper location and sizing of DG. Both methods 
have been able to solved the active power loss 
problem in a coherent system. The research can be 
extended to cover a multi-objective function by adding 
a Power Factor for more effective measurement. 
Furthermore, the experimental data can be adjusted to 
time series, with historical loads and supplies from real 
feeders. 
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