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Abstract: This paper presents evaluation results of a computational algorithm developed to simulate the random 

depolymerization process of a linear polymer having an initial distribution of molecular weights similar to polymers 
obtained by polycondensation of AB-type monomers, i.e., Flory-Schultz or most probable distribution. Starting from 
fundamental definitions of this system, as the initial values of the degree of polymerization and chain number (Xno and 

No, respectively) and the percentage of cleaved bonds (%E), it is confirmed that our algorithm adequately describes the 
random depolymerization process. Results obtained during the computational simulation indicate that the algorithm 
properly predicts, among other things, that the inverse of the final polymerization degree (1/Xnf) increases linearly with 

the applied %E while polydispersity after depolymerization (Df) decreases linearly when the latter parameter increases. 

Keywords: Depolymerization computational simulation, Flory-Schultz distribution, polydispersity index, random 

scission. 

1. INTRODUCTION 

Changes in the molecular weight distribution (MWD) 

experienced by a polymer during a specific 

depolymerization process can provide accurate 

information about the reaction mechanism involved. On 

the one hand, the availability of modern techniques 

such as size exclusion chromatography (SEC) enables 

one to obtain more complete information on the 

degradative process in polymers because it is possible 

to know the MWD evolution, which obviously generates 

far more information than those provided by the sole 

evolution of averages of molecular weight (by number 

or weight) during such processes [1]. On the other 

hand, the emergence in recent years of computational 

tools available to many research groups, has allowed 

the development of algorithms that can simulate a wide 

range of situations involving polymer systems, which 

include depolymerization processes [2-4]. The 

combination of these two technological resources has 

allowed design strategies based primarily on building 

theoretical models that can be used for computational 

simulation of depolymerization processes, which can then 

be confirmed or not by SEC experimental studies. 
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In this work, we present results obtained by means 

of a computational algorithm developed to simulate a 

random depolymerization process. In order to achieve 

reliable results, it was evaluated by simulating a 

random depolymerization of a quite simple polymeric 

system, whose relevant parameters, such as the 

number average degree of polymerization and 

dispersity (Xn and D, respectively) can be directly 

derived from their basic definitions as the 

polymerization extension, initial number of chains and 

bond scission percentage (p, No, %E, respectively). 

Thus, a linear polymeric system was chosen, with an 

initial MWD like those resulting from step-

polymerization of A-B-type monomers, that is a Flory-

Schultz or most probable distribution.  

2. METHODOLOGY 

2.1. Obtaining Samples with Well-Established Initial 
MWD 

The simple step-polymerization system considered 

can be defined according to: 

n A-B  A-(BA)n-1-B + (n-1) L 

where A-B is the monomeric unit, L is the low 

molecular weight species evolved in each step of the 

condensation reaction, and n is the number of 

monomeric units. 
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2.1.1. Mathematical Modeling Using the Flory- 
Schulz Distribution (FSD) 

From a given value for an initial number of 

monomer units (UMo) and a given extent of reaction (p) 

the FSD is obtained by using the following equation [5]: 

Nx = Np
1-x

(1-p) = UMop
1-x

(1-p)
2
         (1) 

where  

Nx: number of polymer molecules with a degree of 

polymerization x 

N: total number of polymer molecules after 

polymerization reaction 

p = (UMO-N)/UMO: extent of the polymerization reaction 

Parameters usually considered on polymer 

characterization are defined as: 

Xn = xNx / Nx: number average degree of 

polymerization            (2) 

Xw = x
2
Nx / xNx: weight average degree of 

polymerization            (3) 

D = Xw/Xn = x
2
Nx Nx / ( xNx)

2
: polydispersity index or 

dispersity.            (4) 

Additionally, Xn can be obtained by Carothers 

equation: 

Xn = 1 / (1-p)            (5) 

and the value of dispersity is given by: 

D = 1 + p            (6) 

2.1.2. Discretization of the FSD 

MWD, obtained in the previous section, is 

discretized by converting each particular Nx value to 

the closest integer. For the distribution thus discretized 

(DFSD), new values for the number average degree of 

polymerization (Xnd), the total number of polymer 

molecules (Nd), the total number of repeating units 

(UMod) and the dispersity (Dd) are obtained (by 

counting). It is noteworthy that differences in the 

number of chains before and after the discretization 

process can be observed, which also generates 

differences between UMo and the total number of 

repeating units after discretization (UMod). 

 

2.1.3. Computational Simulation of Step-
Polymerization 

Using pre-established values for UMo and the 

extension of polymerization to be reached (denoted in 

this part as ps) and a computational algorithm (Scheme 

1) that simulates the random bonding among molecular 

species of any size generated during the 

polymerization process (equal reactivity principle), a 

simulated molecular weight distribution was obtained 

(denoted as SIMD-A, with the A value indicating the 

number of experiments averaged).  

 

Scheme 1: 

2.2. Computer Simulation of Depolymerization 
Process 

Samples with initial MWD previously obtained by 

DFSD and SIMD, are used in the depolymerization 

simulation for well defined initial values for N and p, 

using just the percentage of bonds to be cleaved (%E), 

occurring for such random breakdown only between 

repetitive units forming part of all chains present in the 

sample (Scheme 2). It is important to mention that 

when DFSD is employed as the input data, the 

depolymerization process simulation is performed only 

once because these data are initially obtained by a 

function generating the most probable values for each 
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value of Nx. Meanwhile, when using SIMD-A as the 

input data, it is necessary to perform many simulation 

experiments to obtain an average value because the 

realization of a single experiment generates just one of 

many possible values for the studied parameters. 

 

Scheme 2: 

2.2.1. Initial Samples with DFSD 

After introducing the input data (UMo, p, %E), the 

computational algorithm performs the following 

process: 

a) Discretization of the FSD generating, by 

counting, values for Xnd, Xwd, Nd, UMod and Dd. 

The subscript d refers to values obtained after 

discretization of the FSD. 

b) Simulation of the random depolymerization 

process generating, by counting, the final values 

(after cleavage) for Xndf, Xwdf, Ndf, UModf and Dd. 

The subscript f refers to values obtained after the 

depolymerization process simulation. 

2.2.2. Initial Samples with SIMD-A 

Following the introduction of the input data (UMo, ps 

and %E), the computational algorithm performs the 

following process:  

a) Simulation of the polymerization to complete the 

reaction up to the desired ps value generating, by 

counting, values for Xns, Xws, Ns, UMos and Ds. 

The subscript s refers to values obtained after 

the polymerization process simulation. 

b) Simulation of the random depolymerization 

process generating, by counting, the final values 

(after cleavage) for Xnsf, Xwsf, Nsf, UMosf and Dsf. 

The subscript f refers to the values obtained after 

depolymerization process simulation. 

3. RESULTS AND DISCUSSION 

3.1. Comparison of MWDs Obtained for the Initial 
Sample 

Since the computational algorithm for simulating the 

depolymerization process was developed to cleave 

samples containing an integer number of chains, of any 

size, with integer numbers of repetitive units, an initial 

attempt was made using as input data the DFSD. Table 

1 shows the values of Xn obtained from each one of the 

MWD generated, for the set of values p and N 

evaluated. It can be clearly appreciated that values of 

Table 1: Comparison of the Values Xnd and Xns with the Values of Xn Obtained from the FSD for Different p and N 
Values 

Xnd Xn Xns 

p 
1x10

3
 1x10

4
 

N 
1x10

5
 

5x10
5
 1x10

6
 1/(1-p) 1x10

3
 1x10

4
 

N 
1x10

5
 

5x10
5
 1x10

6
 

0.90000 9.824 9.974 9.998 9.999 9.999 10 10.000 10.000 10.000 10.000 10.000 

0.95000 19.268 19.899 19.987 19.997 19.999 20 19.980 19.998 19.999 19.999 19.999 

0.99000 87.563 98.017 99.731 99.936 99.966 100 99.900 99.990 99.999 99.999 99.999 

0.99500 158.246 192.865 198.968 199.745 199.862 200 199.800 199.980 199.998 199.999 199.999 

0.99875 367.000 715.870 786.624 796.629 798.161 800 800.000 800.000 800.000 800.000 800.000 

0.99900 347.500 874.613 979.855 994.862 997.207 1000 999.001 999.900 999.990 999.998 999.999 
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Xnd (from DFSD) differ significantly from values of Xn 

(from FSD) when small values of N and high values of 

p are considered. Values of Xnd which differ by more 

than 1% of the Xn value have been highlighted. 

Due to the above results, a computational algorithm 

was developed to simulate the polymerization of this 

type of system, which considered the principle of equal 

reactivity as a fundamental premise for the construction 

of the chains. As can be observed in Table 1, the Xns 

values obtained by means of this algorithm (values 

generated by the algorithm simulating the 

polymerization process) appear to produce better 

values than the discretization of the FSD since Xns values 

are closer to the values of Xn than those obtained for Xnd. 

A comparison is performed with Xn because this is a 

generally accepted parameter to characterize these 

systems and since it is very easy to compute using the 

Carothers equation (Equation 5). 

Nevertheless, when the resulting distributions of 

both processes (DFSD and SIMD-1) are compared with 

FSD it can be appreciated that DSIM-1 produces 

significant fluctuations in the wx values (Figure 1a) 

although it also should be noted that such fluctuations 

occur around the expected wx values, i.e., in the 

neighborhood of wx predicted by the FSD. Such 

inconvenience can be largely overcome by averaging 

the wx values from an appropriate number of simulation 

experiments, as it is demonstrated in Figure 1b, which 

shows clearly how these fluctuations decrease when 

results from 100 simulation experiments are averaged 

(SIMD-100) for the same initial values of p = 0.99 and 

N = 1x10
4
 employed to obtain the Figure 1a. 

Similarly, fluctuations in the values of wx also 

decrease when considering higher values of N, as 

shown in Figure 2a and 2b, which compares SIMD-1 

and SIMD-100, respectively, with the DFS and DFSD, 

for values of p = 0.99 and N = 1x10
5
. 

 

Figure 1: Comparison between (a) FSD, DFSD and SIMD-1; (b) DFS, DFSD and SIMD-100. In both cases p = 0.99 and N = 
1x10

4
. 

 

Figure 2: Comparison between (a) FSD, DFSD and SIMD-1; (b) DFS, DFSD and SIMD-100. In either case p = 0.99 and N = 
1x10

5
. 
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Previous results allow concluding that the number of 

chains present in the initial sample of the polymer is an 

important parameter to consider in the simulation of the 

depolymerization reactions. In this regard, all 

depolymerization simulations were performed using 

samples with initial values of p = 0.99 and N = 1x10
5
, 

considering that these values allow computational 

simulation to run in reasonable times. 

3.2. Computational Simulation of the 
Depolymerization Reactions 

We studied the effects of the following parameters 

in the initial sample: number average degree of 

polymerization (Xno), cleavage percentage applied 

(%E) and the number of chains (No), on final values of 

the system such as 1/Xnf and Df. Table 2 provides a 

summary of the conditions under which the 

computational simulation studies of depolymerization 

were conducted. 

3.2.1. Condition I 

Figure 3 shows the resulting MWDs from the 

depolymerization computational simulation of an initial 

sample with values of Xno = 100 and N = 1x10
5
, which 

was evaluated for different %E values. It can be clearly 

observed that all final MWDs are displaced toward 

lower values of x and also that they become more 

narrower. Table 3 shows the Xnse and Dse values 

obtained for the different %E evaluated. 

One of the most commonly used criteria to conclude 

that a depolymerization reaction occurs by a random 

scission mechanism is the existence of a linear 

relationship between 1/Xnf and the reaction time (t), as 

it was proposed by Jellinek [6] through an equation 

similar to: 

1/Xn = kt + 1/Xno           (7) 

where k is the rate constant of the depolymerization 

process and Xno  is de number average polymerization 

degree of the initial sample. 

Some researchers have used this criterion to state 

that their experimental degradation studies take place 

through a mechanism of scission at random points of 

the chains. Thus, in their experimental studies on the 

microbial hydrolytic degradation of the copolyesters 

poly(3-hydroxy-butyrate-co-3-hydroxy-valerate) and 

poly(3-hidroxi-butyrate-co-4-hydroxy-butyrate) Doi et al. 

[7] obtained a linear relationship for 1/Xn vs. t. These 

Table 2: Parameters Evaluated During the Computational Simulation of Depolymerization Processes 

Condition %E Xno No 

I Variable Constant Constant 

II Constant Variable Constant 

III Constant Constant Variable 

 

Figure 3: Final MWDs obtained after the simulation of depolymerization from an initial sample with Xno = 100 and N = 1x10
5
 for 

the different %E shown. All curves were obtained by averaging 100 simulations runs. 
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results are similar to those obtained by Lauzier et al. [8] 

during the hydrolytic degradation of the poly ( -

hydroxy-butyrate) and Kunioka and Doi [9] from the 

thermal hydrolysis of the copolyesters poly(3-hydroxy-

butyrate-co-3-hydroxy-valerate) and poly(3-hidroxi-

butyrato-co-4-hydroxy-butyrate). 

Simulations performed in the present study do not 

explicitly consider the kinetic aspect of the 

depolymerization reaction; however, the plot of 1/Xnf vs. 

%E showed a clear linear relationship (Figure 4).  

 

Figure 4: Plot of 1/Xnsf vs. %E obtained by using results from 
depolymerization computational simulations of an initial 
sample with Xno=100 and N=1x10

5
. 

The straight line obtained from the plot 1/Xnsf vs. %E 

may be entirely explained by considering the definition 

for %E obtained from the basic parameters of the 

system, which produce the following relationship: 

%E= (neo – ne).100/neo =100(1 – ne/neo)        (8) 

where: 

neo = NoXno–No = No(Xno-1) = NopoXno: total number of 

bonds in the initial sample 

ne = NXn–N = N(Xn-1) = NpXn: total number of bonds in 

the sample after depolymerization simulation  

By substituting neo and ne into equation 8 it 

becomes: 

%E= 100(1 – NXnp/NoXnopo)         (9) 

Because NoXno = NXn, equation 9 simplifies to: 

%E= 100(1 – p/po)        (10) 

By reordering it: 

-p/po = %E/100 - 1 

-p = po%E/100 - po 

By adding 1 to each side of the preceding equation 

it becomes: 

1 – p = po%E/100 +1 - po 

Finally, substituting 1-p and 1-po by 1/Xn and 1/Xno, 

respectively, in the preceding equation, the required 

relationship is derived: 

1/Xn = po%E/100 + 1/Xno        (11) 

According to equation 11 a plot of 1/Xnsf vs. %E (po 

constant) should produce a straight line with slope m = 

po/100 and intercept b = 1/Xno, as is perfectly observed 

in Figure 4. Values for po and Xno obtained from m and 

b are presented in the Table 4. 

Equation 11 also allows generating a direct 

relationship between %E and t by substituting 1/Xn 

according to equation 7: 

Table 3: Values of Dsf and Xnsf after of the Depolymerization Computational Simulation of an Initial Sample with Xno = 100 
and No =1x10

5
. All Values were Obtained by Averaging 100 Simulation Runs 

%E Xnsf 1/Xnsf Dsf (SIMD-100) 

0.0 100.00 0.010 1.990 

0.5 59.22 0.017 1.983 

1.0 47.88 0.021 1.979 

2.0 32.62 0.031 1.969 

4.0 19.61 0.051 1.949 

6.0 13.85 0.072 1.928 

8.0 10.60 0.094 1.906 

10.0 8.55 0.117 1.883 
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%E = 100kt/po        (11a) 

Thus, a plot of %E vs. t (po constant) should produce 

a straight line from whose slope m = 100k/po the value of 

the rate constant k of the depolymerization process can 

be computed. 

Furthermore, it is possible to establish a relationship 

between the final polydispersity of the system as a 

function of %E applied, by considerations similar to 

those shown in the previous section, which leads to the 

following equation for Df: 

Df = Do – po%E/100        (12) 

Figure 5 shows the graph obtained for Dsf vs. %E 

using the values generated by the computational 

simulation of the depolymerization process. It may be 

appreciated that an excellent straight line is obtained 

which produces values for po and Do consistent with 

values obtained above (Table 4). 

 

Figure 5: Plot of Dsf vs. %E using results from 
depolymerization computational simulations of an initial 
sample with Xno=100 and N=1x10

5
. 

3.2.2. Condition 2 

Figure 6 shows results obtained by plotting the 

values of Df coming from the depolymerization 

simulations for samples with different values of Xno and 

maintaining a %E constant. As it may be appreciated, 

all obtained straight lines tend to a maximum value for 

Df when 1/Xno tends to zero, i.e., Xno   (hereinafter 

D ). Likewise, and according to their associated linear 

equations, all of them satisfy the following relationship: 

Dsf = b + m/Xno = D  + (1 - D )/Xno      (13) 

The dotted line is obtained for Df values expected 

for each of the initial samples (%E = 0); in this case the 

value of D 2 when 1/Xno  0 because Xno  . 

In order to find an equation similar to equation 13 

based on fundamental parameters of the system, with 

the purpose of predicting the behavior of Dse as 

function of 1/Xno, equation 11 can be rearranged as 

follows: 

p = po – po%E/100 

1 + p = 1 + po – po%E/100 = 1 + po(1-%E/100) = 1 + (1 

– 1/Xno)(1 - %E/100) 

Dsf = (2 - %E/100) + (%E/100 – 1)/Xno      (14) 

Equation 14 is similar to the equation obtained 

using the data coming from depolymerization 

simulation; from it, one can obtain the values for: 

D  = 2 - %E/100 

therefore the slope will be: 

m = (1 – D ) = %E/100 – 1 

The observed linear behavior of the graphs Dsf vs. 

1/Xno obtained by using the values of Dse from the 

depolymerization computational simulation, maintaining 

constant values for %E, fits perfectly with expectations 

from fundamental definitions, validating also by this 

route the proper functioning of the computational 

algorithm created for this simulation. 

Table 4: Comparison of the Sample Initial Values (po = 0.99, Xno = 100, Do = 1.99) with those Computed by Using m and 
b Values Obtained from Plots of 1/Xnsf vs. %E and Dsf vs. %E 

Initial sample values obtained from the plots* 
Plot 

po Xno Do 

1/Xnsf vs. %E (m = 0.00990; b = 0.0100) 100m = 0.99 1/b = 100 1 + po = 1.99 

Dsf vs. %E (m =-0.00987; b = 1.98978) 
-100m = 0.987 

Do – 1 = 0.990 

1/(1-po) = 77 

1/(1-po) = 98 

1 + po = 1.987 

b = 1.990 

*Bold values were computed directly by using m and b values obtained from each straight line. Values in regular type were computed using the corresponding value 
shown in the respective equation. which is taken from its own row in the table. 
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3.3.3. Condition 3 

Figure 7 shows the MWDs obtained after the 

depolymerization simulation at different %E (constant) 

of an initial sample with Xno = 100, and varying the 

initial number of chains. MWDs are very similar to large 

values of No, while wx values show oscillations, that are 

more significant, for lower values of No. 

Because the MWDs remained without an apparent 

displacement with increasing No, it is expected that 

dispersity will not be affected by varying No, at least for 

high values of No, where the wx values show less 

oscillations. The plot from Dsf vs. No in Figure 8 

confirms this, showing that Def remains practically 

constant and does not depend on No, although it is 

important to notice that it shows fluctuations for low No 

values (not shown), which can perhaps be explained 

since the MWDs fail to be well defined for low No 

values. 

The constant values of Dsf for sufficiently high 

values of No can also be explained by equations 

derived from the fundamental definitions of the system. 

Thus, because 1/Xno = No/XnN = constant, equation 12 

can be rearranged as follows:  

Dsf = Do – (1 – 1/Xno)%E/100 = 

Dsf = Do – (1 – No/XnN)%E/100 = 

Dsf = Do – %E/100 – (%E/100XnN)No       (15) 

The value of Dsf predicted by this equation appears 

to have a linear dependence on No; however, as 

No/NnN remains constant while Xno stays constant, the 

equation manages to explain values obtained for Dsf, 

which are constant and independent of No. Another 

important point that, can be noted from equation 15, is 

that the higher Xno and lower the %E applied, the value 

of Dsf will approach Do -%E/100. 

 

Figure 6: Plots for Dsf vs. 1/Xno using results from depolymerization computational simulations of an initial sample with N=1x10
5
 

and maintaining constant the %E values shown. 
 

 

Figure 7: MWDs obtained after of depolymerization computational simulation at %E = 6% of an initial sample with Xno = 100 for 
the No values shown. 



182     Journal of Research Updates in Polymer Science, 2013 Vol. 2, No. 3 López et al. 

4. CONCLUSIONS 

- The discretization process applied to the Flory-

Schulz distribution generates MWDs having 

discrepan-cies between the initial UMo value and 

final number of repetitive units, which are 

particularly pronounced for low No and high p 

values. 

- The computational algorithm developed to 

simulate the step-polymerization of AB-type 

monomers allows obtaining MWDs without 

disagreements between UMo and the final 

numbers of repetitive units, although the wx 

values show very large fluctuations. However, 

this problem can be minimized by averaging a 

sufficient number of simulation runs. 

- The computational algorithm developed to 

simulate the depolymerization by a random 

scission mechanism of a linear polymer obtained 

by step polymerization of AB-type monomers 

produces results consistent with those expected 

from the basic definitions of such systems, i.e. 

linear relationships for 1/Xnf and Df as these are 

plotted as a function of %E, maintaining Xno and 

No constants; a linear relationship for the Df vs. 

1/Xno plot (%E and No constants); and Df was 

shown to remain independent of No for high 

values of No, with %E and Xno constants. Thus, 

this algorithm may be considered ready for 

dealing with depolymerization simulation studies 

of linear polymeric systems similar to the one 

used in this study as a model, provided that their 

experimental MWDs can be adequately either 

simulated or discretized. Likewise, it should be 

possible to successfully simulate the random 

depolymerization of linear systems with different 

MWDs than those used in this study (wider or 

narrower), provided that their experimental 

MWDs can be appropriately discretized. Finally, 

the algorithm should be easily adjusted for 

simulating kinetic studies of random 

depolymerization reactions through the 

establishment of the constant of proportionality 

between %E and the reaction time, i.e. the rate 

constant of the depolymerization process. 
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