
 Journal of Research Updates in Polymer Science, 2022, 11, 1-8 1 

 
E-ISSN: 1929-5995/22 

Polymers and the Water Crisis in Brazil: Opportunities for 
Technological and Environmental Development 

Harrison Lourenço Corrêa* 

Department of Mechanical Engineering, Laboratory of Polymer Materials, Federal University of Paraná, 
Technology Sector, Brazil 

Abstract: At a global level, climate changes have been responsible for alterations in rainfall regimes. Numerous impacts 
resulting from such complex dynamics negatively affect peoples and nations. Desertification, sandification, floods, and 
droughts are some evident examples of the transformation the world is undergoing. In Brazil, the past few years have 
been characterized by long periods of drought in some regions. As a result, there have been considerable drops in the 
levels of reservoirs that supply important urban and economic axes in the country. Implications on the national economy 
and entire production chains aggravate the current scenario, along with two long years of the Sars-Cov-2 pandemic 
period. From this perspective, the present work aims to address the pressing need to adopt technologies and techniques 
for collecting and treating rainwater. To this end, specialized databases were accessed in order to evaluate ongoing 
research on the use of polymeric materials to achieve that goal. 
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1. INTRODUCTION  

Although there is still disagreement about what has 
promoted extreme weather events - whether just a 
result of human action or a natural event stemming 
from the Earth's cycle - climate change is ever more 
visible, more intense, and more frequent. Event-related 
theories usually start with a disruption. An event 
depends on the level of experience - whether it is 
experienced in the present or constructed in retrospect 
- and is perceived as something that has changed 
dramatically [1, 2]. From this perspective, climate 
change is an event whose effects are felt like an 
extension or exacerbation of the weather pattern. Its 
developments are represented by timescales and 
oscillations, described over years, decades, and 
centuries [3]. Regardless of the time scale used as a 
reference, extreme events have become more 
impacting on humanity, no matter how they are 
reported by the local and/or the international media [4]. 
The consequences are manifold and sometimes 
immeasurable. But on a macro scale, the natural [5-
11], economic [12-14], political, and also social [15-17] 
effects stand out. It is, therefore, necessary that 
political actors - from the organized civil society and 
private organizations -, researchers, and educators act 
responsibly in order to mitigate that scenario. 

Studies project, for Brazil, climatic effects such as 
an increase in the average temperature in the central  
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region [18], an increase in the number of days with 
temperatures above 34°C [19], an increase in the 
number of consecutive drier days and higher annual 
precipitation both in the western Amazon and southern 
regions of Brazil [20] and a decrease in rainfall rates for 
the Midwest and Northeast of Brazil [21]. The São 
Francisco River Basin, for example, had a considerable 
reduction in its baseflow, impacting the population and 
the product segments that rely on its waters [22]. 

Regarding research and development, numerous 
studies have been carried out worldwide to better 
understand extreme climate phenomena and also to 
circumvent their possible damage to society. To this 
end, different areas of knowledge are brought together 
to attain such a goal. Materials Engineering is one of 
them. Through the development and processing 
techniques of polymeric materials, many projects for 
water catchment and treatment have become feasible.  

In this sense, the present paper aims to address the 
main polymers used in projects and research for 
rainwater catchment and treatment as a way of 
mitigating the effects of long droughts in some regions 
of Brazil. 

2. METHODOLOGY 

The present work is based on a survey of types of 
polymers used in manufacturing devices for collecting 
and treating rainwater. Articles submitted and 
published in well-recognized search platforms were 
analyzed. To this end, and due to its relevance in the 
production of academic materials, the Science Direct 
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database was used. Keywords that converged on the 
topic of polymers used in water treatment were used. 
The searches focused on words appearing in the titles 
of the publications.  

3. RESULTS 

According to a recent Frost & Sullivan (2021) [23] 
survey on polymer markets and circular economy, the 
scarce potable-water scenario will demand efforts from 
major players (politicians or not) to adopt water 
treatment technologies. The same document also 
states that polymer membranes will play an important 
role in a market that is tending to grow. It is estimated 
that by 2027 the segment will mobilize around US$ 9 
billion per year, at the global level. When compared to 
2020, there will be a 4.2% growth rate per year. Data 
obtained by Frost & Sullivan reinforce that the demand 
for the next 10 years will be driven by the food and 
beverage industry, which requires treated water. But 
clinics and hospitals have also increased such 
demand, particularly for their dialysis and blood 
transfusion units [24-26]. 

Searches for articles on the ScienceDirect platform 
occurred without defining a time frame. By using the 
combination of the keywords 'polymer' and 'water', 
3,366 articles were retrieved containing those words in 
their titles. However, many of them were not directly 
associated with water catchment and/or treatment 
technologies per se. In order to further refine the 
search and make it more precise to the proposed topic 

- namely, the development of research and technology 
in the area of water catchment and treatment using 
polymers -, periodicals with potential adherence to the 
theme were defined. To this end, the following journals 
were searched: Polymer, Journal of Membrane 
Science, European Polymer Journal, Chemical 
Engineering Journal, Separation and Purification 
Technology, Polymer Science USSR, Water Research, 
Journal of Petroleum Science and Engineering, 
Desalination. As a result of such filtering, the 
publications were reduced to a total number of 695, of 
which 645 (92.8%) were research articles, and the 
remainder divided among review articles (2.6%), book 
reviews (0.6%), conference (0.1%), discussion (0.1%), 
editorial (0.1%), errata (0.7%), and short 
communications (2.9%). Three journals that 
concentrated more than 100 publications were Polymer 
(176 publications), Journal of Membrane Science (142 
publications), and European Polymer Journal (100 
publications). 

All publications went through a screening stage 
when their respective abstracts were read. From this 
stage on, it was possible to evaluate the relevance of 
the articles to the proposed topic. Articles referring to 
the use of polymeric materials in separation processes 
with no potential for human consumption or reuse were 
disregarded, as well as publications associated with 
polymerization and solubilization of polymers in water. 
The queries were performed between October 20 and 
October 25, 2021. In the first screening step, 

 
Figure 1: Percentage of academic publications, by country, on polymer membranes for water treatment. Search made in the 
ScienceDirect platform. 
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considering the relevance of the titles of the 
publications with the topic of the project, the search 
retrieved a total of 96 publications. 

Figure 1 shows the percentage of world production 
on the topic. 

The People's Republic of China has the largest 
number of published scientific articles, totaling almost 
24% of the global publications. Despite the demand for 
treated and potable water, Brazil can be considered an 
intermediate research center on the subject, 
accounting for nearly 2% of the academic productions 
obtained from the research platform. 

3.1. Polymers for Manufacturing Membranes for 
Filtration 

The problems related to water pollution and its 
management have stimulated various studies on the 
development of technologies capable of promoting the 
reuse of that natural resource, whether potable or not 
[27-30]. One of the widely employed technologies for 
reusing contaminated water is filtration by polymeric 
membranes. Those materials can be used in various 
production industries: oil and gas, pharmaceuticals, 
food industry, medical applications, etc. [31-35]. The 
membranes are designed to be permeable to water 
and not to compounds that are removed from the feed 
stream and rejected [36]. Membranes for microfiltration, 
ultrafiltration, and nanofiltration can be able to filter out 
0.5-5; 0.005-0.5 and 0.0007-0.005 micrometers 
particles, respectively [37]. 

Membrane separation processes are appealing for 
a couple of reasons: they are relatively simple to 
operate when compared to other processes in the 
market; they operate at room temperature and are 
useful when one of the currents is thermosensitive; 
they can be applied in different circumstances; there is 
no phase change [38].  

The advantage of employing polymers as a 
membrane matrix lies in their chemical functionalization 
ability [39, 40] and the possibility of obtaining 
nanostructures that can act as barriers at the 
nanoscale. This procedure allows greater selectivity of 
the developed membrane, which can abstract a certain 
group of substances at the expense of others, at the 
level of particles, molecules, or ions [41]. In general, 
nanofiltration membranes are intended for the 
treatment of seawater and water contaminated with 
micropollutants [42-44].  

Effective removal of trace organic contaminants has 
been one of the main applications of nanofiltration and 
reverse osmosis membranes for producing potable 
water. Polymer structures based on aliphatic-aromatic 
polyamide have been widely studied at bench and pilot 
scale levels for removing pesticides, pharmaceuticals, 
and other molecules that are present in water [41]. 
Also, according to the authors, those studies involved 
the analysis of only one organic solute. Organic 
compounds that were approximately the pore size of 
nanofiltration and reverse osmosis membranes and 
that had an ionizable functional group were rejected by 
electrostatic repulsion. Such repulsion occurs when the 
membrane surface and the solute present in the feed 
current have the same charge [45]. Studies have 
pointed out that the hydrophobicity of membranes 
strongly affects the separation of organic water 
molecules. Furthermore, the researchers concluded 
that hydrophobic membranes generally have a greater 
tendency to build up fouling than hydrophilic 
membranes. 

In the survey on membranes tested for organic 
contaminant removal, Gohil and Ray (2017) [41] 
verified the percentage of rejection for particular 
membranes. The NF-70 type, for example, rejected 
beta zone, alachlor, chlordane, heptachlor, vinclozolin, 
and pirimicarb molecules by 100%. These membranes, 
designed by FilmTec Corporation, are negatively 
charged and used for nanofiltration processes.  

3.1.1. Cellulose Acetate (CA) 

Membranes produced from acetate and cellulose 
have high hydrophilicity, high water permeability, and a 
low tendency to form fouling [46, 47]. Li and colleagues 
(2006) [48] developed a CA-based membrane for 
water-oil separation. The results showed an oil 
retention level of over 99%, with a 10 mg/L oil content 
in the permeate.  

In their studies regarding the synthesis and 
characterization of CA-based and nylon-66-based 
membranes, [49] obtained promising water-oil 
separation results. When compared to the evaluated 
commercial CA membranes (Merck Millipore, with a 
0.22 µm pore diameter), whose permeate flow rate is 
22 L/m2.h and oil rejection of 70%, the modified 
membranes showed a permeate flow rate of 33 L/m2.h 
and an oil rejection percentage close to 95%. The 
authors found that increasing the nylon-66 content in 
the membrane composition represented an increase in 
the oil rejection percentage. That is because polyamide 
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conferred greater hydrophilicity to the membrane 
surface. The permeation properties were attributed to 
the homogeneous distribution of nylon-66 on the CA 
matrix. The modified membranes were produced using 
the cast molding method. The thermal and mechanical 
properties of the developed membranes proved to be 
better than their commercial counterparts. 
Thermogravimetric analyses, performed at 15°C/min 
over a temperature range between 300°C and 600°C 
under an inert atmosphere, showed that the 
membranes developed at laboratory scale were more 
resistant to high temperatures and had a lower mass 
loss. The authors attributed such behavior probably to 
the formation of extra hydrogen bonds, between CA 
and nylon, which will require greater energy to promote 
ruptures, increasing temperature. 

3.1.2. Polysulphone (PSF) 

PSF and CA were also jointly employed for 
developing membranes for water-oil separation. Mousa 
and co-authors (2020) [50] obtained, by 
electrospinning, different types of coaxial nanofibers, 
which were doped with zinc oxide (ZnO) nanoparticles 
and treated with an aqueous solution of sodium 
hydroxide (NaOH). Figure 2 shows the arrangement of 
polymeric structures in the fibers. The results revealed 
a tensile strength of up to 7.58 MPa, a modulus of 
elasticity of 0.2 MPa, and toughness of 23.4 J.m-3. The 
nanofibers with the NaOH aqueous solution had 
increased hydrophilicity and, consequently, an 
increased water separation flux. This was attributed to 
the hydrogen bonds formed between NaOH and water 
molecules. The tests that were performed led to a 
water flow rate of 420 L/m2.h for the treated 
membranes, 1.6 times higher than that for the non-
treated membranes.  

 
Figure 2: Scheme illustrating the coaxial nanofiber 
membrane. 

In addition to those results, the authors concluded 
that the ZnO doped membranes presented some 
activity against Escherichia coli. According to the 

authors, the bactericide action can be attributed to two 
reasons: (a) interaction of ZnO nanoparticles with the 
microorganisms and (b) release of antimicrobial ions. 
Combined, these steps favor the formation of oxygen-
based species, such as OH radicals, hydrogen 
peroxide, and O2, which are capable of causing 
damage to E. coli cells. These studies complement the 
already known multifunction of ZnO in polymer 
composites, as an additive for improving roughness, 
permeability, and fouling resistance - already described 
in the literature [51]. Nanoparticles of titanium oxide, 
graphene oxide, diamond, and carbon nanotubes are 
also incorporated in the manufacturing processes of 
polyamide-based membranes aiming to improve the 
roughness and hydrophilicity of the material [52].  

3.1.3. Polyvinylidene Fluoride (PVDF) 

Polyvinylidene fluoride (PVDF) is a semicrystalline 
thermoplastic polymer with varied applications due to 
its unique properties such as chemical, thermal to UV 
radiation stability, oxidation resistance [53], biological 
resistance, and durability [54], with potential use in the 
manufacture of fibers for making some of those 
protective face-covers used during the Sars-CoV-2 
pandemic period [55]. There are five crystalline phases 
(α, β, γ, δ, ɛ), with the β and γ being polar phases that 
present conditions to favor the piezo, pyro, and 
ferroelectric properties of the polymeric material [54]. 
The alpha phase is non-polar and easily obtained by 
polymerization.  

In their studies related to water-oil separation 
processes, [39] developed a membrane-based on two 
polymers: PVDF and poly(N-acryloyl morpholine), 
PACMO, a non-ionic polymer. The aim was to obtain 
graphitized polymeric structures on a PVDF base, 
called PVDF-g-PACMO, and thus generate a 
membrane with lower fouling generation, based on the 
knowledge that hydrophilic polymeric bristles on 
membrane surfaces can reduce the formation of 
deposits during the water-oil separation process. 
Figure 3 illustrates the poly(N-acryloyl morpholine) 
structure anchored on the PVDF substrate. 

The membranes were obtained with pore size 
control, via surface-initiated atom transfer radical 
polymerization (ATRP). 

3.1.4. Poly(Piperazine Amide) (PIPA) 

Many nanofiltration membranes are composite 
materials obtained from a thin layer of polyamide 
prepared by interfacial polymerization [56]. The 
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performance of a nanofiltration membrane depends on 
many variables, such as the structure of the monomers 
that constitute the polymer and the preparation and 
post-treatment conditions [57, 58]. 

Polyamides derived from aromatic amines, such as 
1,3-phenylenediamine, MPD; and aliphatic diamines, 
such as piperazine, PIP, have shown to be applicable 
for manufacturing reverse osmosis and nanofiltration 
membranes. One such polyamide is 
poly(piperizinamide), PIPA. Piperazine is a monomer 
widely used in interfacial polymerization processes 
that, when reacted with trimesoyl chloride (TMC), forms 
PIPA. Its molecular structure, shown in Figure 4, 
contains crosslinked and uncrosslinked regions and 
has pendent carboxylic groups. These groups arise 
during the interfacial polymerization process, due to the 
partial hydrolysis of acyl chloride present in TMC. The 
content of carboxylic groups interferes with the water 
flow rate and the electrostatic repulsion between ions 
and charged molecules with the membrane surface 
[56]. 

Commercial membranes produced from such 
polymer exhibit high selectivity and pore size around 1 
nm and are suitable for removing organic compounds 
[59]. 

 
Figure 4: Molecular structure of poly(piperazine amide), 
PIPA. 

3.1.5. Poly(Ethylene Terephthalate) (PET) 

In addition to the development of new polymers - 
useful for manufacturing water treatment membranes -, 

the modification of already consolidated polymers 
proves to be promising in obtaining filtration properties. 
[60], for example, have assessed the filtration potential 
of PET fibers whose surface morphology has been 
altered by poly(ethylene glycol) PEG particles. Studies 
have shown that the incorporation of such particles 
helps in reducing the deposition phenomenon in 
membranes [61, 62]. PEG microspheres can be grafted 
onto the surfaces of a polymer matrix or else added as 
a blend [60]. In their studies, Regev and co-authors 
(2019) [60] polymerized spherical particles (1 to 10 µm 
diameters) of poly(ethylene glycol) methacrylate, 
PEGMA, onto PET fiber surfaces. Figure 5 illustrates 
flat PET fibers coated with PEGMA particles.  

The results showed an increase in the efficiency of 
dirt removal from the water, with a decrease in its 
turbidity. 

Currently, most commercial polymer membranes 
are of petrochemical origin, the presence of which will 
tend to grow in the market as the demand for 
membranes increases [63]. However, the same search 
for alternative and sustainable methods and materials 
will equally affect the membrane industry. In that 
regard, research in the area has also been carried out 
to develop biomaterials that can foster wastewater 
treatment with a capability equal to that of similar 
petrochemicals. Kim et al (2020) [64] developed 
biopolymers based on isosorbide, which has already 
been used by the productive sector as an additive to 
improve the thermal, mechanical, and optical properties 
of many polymers. 

CONCLUSIONS 

The growing demand for water for various 
applications, coupled with the imminent scarcity 
scenario of this natural resource, requires the adoption 

 
Figure 3: Schematic illustration of the PACMO structures anchored on the PVDF substrate. 
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of water reuse technologies. All indications are that the 
development of membranes and filtration systems 
(ultra, nano, and microfiltration) depends on research in 
the domain of materials, especially in the area of 
polymers.  

A bibliographical survey in specialized databases 
reveals a worldwide interest in the development of 
polymer membranes for water treatment. Although the 
studies were mostly conducted in the People's 
Republic of China, many other countries, including 
Brazil, are doing research on the subject, seeking to 
improve technologies and materials used in filtration 
units (ultra, micro, and/or nanofiltration). Despite the 
recent water crisis faced by Brazil, the country still 
lacks additional research and relevant publications on 
the development and/or improvement of polymer 
membranes for water treatment, evidencing a potential 
for the emergence of new research groups in the 
country. 

Even with the robust consolidation of the 
commercial membrane industry, there is still room for 
further improvement of the membranes already in use. 
Chemical modifications through particle doping or 
interfacial polymerization techniques have proven to be 
viable alternatives to increase membrane performance, 
whether to reduce deposits or to increase the water 
flow. 
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