Relationship between Thermal Conductivity and Compressive Strength of Insulation Concrete: A Review

Authors

  • Chao Wu School of Transportation Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China and Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
  • Shaoqing Liu School of Transportation Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China and State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
  • Jianping Guo State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
  • Hongqiang Ma College of Civil Engineering and Architecture, Hebei University, Baoding, 071002, China and Technology Innovation Center for Testing and Evaluation in Civil Engineering of Hebei Province, Hebei University, Baoding, 071002, China
  • Li He School of Ecology and Environment, Beijing Technology and Business University, 33 Fucheng Road, Beijing 100048, China

DOI:

https://doi.org/10.6000/1929-5995.2023.12.08

Keywords:

Foaming, lightweight aggregates, thermal conductivity, compressive strength, concrete

Abstract

Developing insulation concrete with high strength is essential for the construction of energy saving buildings. This is important to achieve carbon neutrality in the modern building industry. This paper reviews the existing studies in the literature on insulation concrete. This paper aims to reveal the correlation between the thermal conductivity and strength of concrete and identify the most effective method to make insulation concrete with lower thermal conductivity but higher strength. The review is carried out from two perspectives, including the effects of different foaming methods and various lightweight aggregates. As for the foaming methods, the chemical and mechanical foaming methods are discussed. As for the lightweight aggregates, cenospheres, porous aggregates, aerogels, and phase change materials are assessed. It is clearly observed that the thermal conductivity and compressive strength of concrete can be fitted by a linear function. As for the foaming methods, chemical foaming using hydrogen peroxide is the most effective to produce concrete with relatively lower thermal conductivity and higher compressive strength. For concrete with lightweight aggregates, cenospheres are the best option. Finally, recommendations are made to develop concrete with lower thermal conductivity and higher strength.

References

Li X, Zhou X, Tian Y, Li M. A modified cyclic constitutive model for engineered cementitious composites. Engineering Structures 2019; 179: 398-411. https://doi.org/10.1016/j.engstruct.2018.09.030 DOI: https://doi.org/10.1016/j.engstruct.2018.09.030

Remesar JC, Vera S, Lopez M. Assessing and understanding the interaction between mechanical and thermal properties in concrete for developing a structural and insulating material. Construction and Building Materials 2017; 132: 353-364. https://doi.org/10.1016/j.conbuildmat.2016.11.116 DOI: https://doi.org/10.1016/j.conbuildmat.2016.11.116

Vaou V, Panias D. Thermal insulating foamy geopolymers from perlite. Minerals Engineering 2010; 23(14): 1146-1151. https://doi.org/10.1016/j.mineng.2010.07.015 DOI: https://doi.org/10.1016/j.mineng.2010.07.015

Liu Z, Shao N-N, Wang D-M, Qin J-F, Huang T-Y, Song W, Lin M-X, Yuan J-S, Wang Z. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash. International Journal of Minerals, Metallurgy, and Materials 2014; 21(1): 89-94. https://doi.org/10.1007/s12613-014-0870-4 DOI: https://doi.org/10.1007/s12613-014-0870-4

Shiu H-S, Lin K-L, Chao S-J, Hwang C-L, Cheng T-W. Effects of foam agent on characteristics of thin-film transistor liquid crystal display waste glass-metakaolin-based cellular geopolymer. Environmental Progress and Sustainable Energy 2014; 33(2): 538-550. https://doi.org/10.1002/ep.11798 DOI: https://doi.org/10.1002/ep.11798

Feng J, Zhang R, Gong L, Li Y, Cao W, Cheng X. Develop-ment of porous fly ash-based geopolymer with low thermal conductivity. Materials and Design 2015; 65: 529-533. https://doi.org/10.1016/j.matdes.2014.09.024 DOI: https://doi.org/10.1016/j.matdes.2014.09.024

Łach M, Korniejenko K, Mikuła J. Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Engineering 2016; 151: 410-416. https://doi.org/10.1016/j.proeng.2016.07.350 DOI: https://doi.org/10.1016/j.proeng.2016.07.350

De Rossi A, Carvalheiras J, Novais RM, Ribeiro MJ, Labrincha JA, Hotza D, Moreira RFPM. Waste-based geopolymeric mortars with very high moisture buffering capacity. Construction and Building Materials 2018; 191: 39-46. https://doi.org/10.1016/j.conbuildmat.2018.09.201 DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.201

Remadnia A, Dheilly RM, Laidoudi B, Quéneudec M. Use of animal proteins as foaming agent in cementitious concrete composites manufactured with recycled PET aggregates. Construction and Building Materials 2009; 23(10): 3118-3123. https://doi.org/10.1016/j.conbuildmat.2009.06.027 DOI: https://doi.org/10.1016/j.conbuildmat.2009.06.027

Arellano Aguilar R, Burciaga Díaz O, Escalante García JI. Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Construction and Building Materials 2010; 24(7): 1166-1175. https://doi.org/10.1016/j.conbuildmat.2009.12.024 DOI: https://doi.org/10.1016/j.conbuildmat.2009.12.024

Rickard WDA, Vickers L, van Riessen A. Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions. Applied Clay Science 2013; 73: 71-77. https://doi.org/10.1016/j.clay.2012.10.006 DOI: https://doi.org/10.1016/j.clay.2012.10.006

Liu MYJ, Alengaram UJ, Jumaat MZ, Mo KH. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings 2014; 72: 238-245. https://doi.org/10.1016/j.enbuild.2013.12.029 DOI: https://doi.org/10.1016/j.enbuild.2013.12.029

Jiang J, Lu Z, Niu Y, Li J, Zhang Y. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Materials and Design 2016; 92: 949-959. https://doi.org/10.1016/j.matdes.2015.12.068 DOI: https://doi.org/10.1016/j.matdes.2015.12.068

Hajimohammadi A, Ngo T, Mendis P, Kashani A, van Deventer JSJ. Alkali activated slag foams: The effect of the alkali reaction on foam characteristics. Journal of Cleaner Production 2017; 147: 330-339. https://doi.org/10.1016/j.jclepro.2017.01.134 DOI: https://doi.org/10.1016/j.jclepro.2017.01.134

Huang Y, Gong L, Shi L, Cao W, Pan Y, Cheng X. Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material. Energy and Buildings 2018; 168: 9-18. https://doi.org/10.1016/j.enbuild.2018.02.043 DOI: https://doi.org/10.1016/j.enbuild.2018.02.043

Gong J, Duan Z, Sun K, Xiao M. Waterproof properties of thermal insulation mortar containing vitrified microsphere. Construction and Building Materials 2016; 123: 274-280. https://doi.org/10.1016/j.conbuildmat.2016.04.107 DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.107

Souza FBD, Montedo ORK, Grassi RL, Antunes EGP. Lightweight high-strength concrete with the use of waste cenosphere as fine aggregate. Revista Matéria 2019; 24(4). https://doi.org/10.1590/s1517-707620190004.0834 DOI: https://doi.org/10.1590/s1517-707620190004.0834

Rheinheimer V, Wu Y, Wu T, Celik K, Wang J, Lorenzis LD, Wriggers P, Zhang M-H, Monteiro PJM. Multi-scale study of high-strength low-thermal-conductivity cement composites containing cenospheres. Cement and Concrete Composites 2017; 80: 91-103. https://doi.org/10.1016/j.cemconcomp.2017.03.002 DOI: https://doi.org/10.1016/j.cemconcomp.2017.03.002

Wang M-R, Jia D-C, He P-G, Zhou Y. Microstructural and mechanical characterization of fly ash cenosphere/ metakaolin-based geopolymeric composites. Ceramics International 2011; 37(5): 1661-1666. https://doi.org/10.1016/j.ceramint.2011.02.010 DOI: https://doi.org/10.1016/j.ceramint.2011.02.010

Lu Z, Hanif A, Lu C, Liu K, Sun G, Li Z. A novel lightweight cementitious composite with enhanced thermal insulation and mechanical properties by extrusion technique. Construction and Building Materials 2018; 163: 446-449. https://doi.org/10.1016/j.conbuildmat.2017.12.130 DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.130

Liu C, Qian R, Liu Z, Liu G, Zhang Y. Multi-scale modelling of thermal conductivity of phase change material/recycled cement paste incorporated cement-based composite material. Materials and Design 2020; 191: 108646. https://doi.org/10.1016/j.matdes.2020.108646 DOI: https://doi.org/10.1016/j.matdes.2020.108646

Nambiar EKK, Ramamurthy K. Air‐void characterisation of foam concrete. Cement and Concrete Research 2007; 37(2): 221-230. https://doi.org/10.1016/j.cemconres.2006.10.009 DOI: https://doi.org/10.1016/j.cemconres.2006.10.009

Henon J, Pennec F, Alzina A, Absi J, Smith DS, Rossignol S. Analytical and numerical identification of the skeleton thermal conductivity of a geopolymer foam using a multi-scale analysis. Computational Materials Science 2014; 82: 264-273. https://doi.org/10.1016/j.commatsci.2013.09.062 DOI: https://doi.org/10.1016/j.commatsci.2013.09.062

Kamseu E, Ngouloure ZNM, Ali BN, Zekeng S, Melo UC, Rossignol S, Leonelli C. Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy and Buildings 2015; 88: 45-56. https://doi.org/10.1016/j.enbuild.2014.11.066 DOI: https://doi.org/10.1016/j.enbuild.2014.11.066

She W, Zhao G, Cai D, Jiang J, Cao X. Numerical study on the effect of pore shapes on the thermal behaviors of cellular concrete. Construction and Building Materials 2018; 163: 113-121. https://doi.org/10.1016/j.conbuildmat.2017.12.108 DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.108

Sanjayan JG, Nazari A, Chen L, Nguyen GH. Physical and mechanical properties of lightweight aerated geopolymer. Construction and Building Materials 2015; 79: 236-244. https://doi.org/10.1016/j.conbuildmat.2015.01.043 DOI: https://doi.org/10.1016/j.conbuildmat.2015.01.043

Hlaváček P, Šmilauer V, Škvára F, Kopecký L, Šulc R. Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. Journal of the European Ceramic Society 2015; 35(2): 703-709. https://doi.org/10.1016/j.jeurceramsoc.2014.08.024 DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.08.024

Novais RM, Ascensão G, Ferreira N, Seabra MP, Labrincha JA. Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams. Ceramics International 2018; 44(6): 6242-6249. https://doi.org/10.1016/j.ceramint.2018.01.009 DOI: https://doi.org/10.1016/j.ceramint.2018.01.009

Zhu W, Rao XH, Liu Y, Yang E-H. Lightweight aerated metakaolin-based geopolymer incorporating municipal solid waste incineration bottom ash as gas-forming agent. Journal of Cleaner Production 2018; 177: 775-781. https://doi.org/10.1016/j.jclepro.2017.12.267 DOI: https://doi.org/10.1016/j.jclepro.2017.12.267

Su Z, Hou W, Sun Z, Lv W. Study of in situ foamed fly ash geopolymer. Materials (Basel) 2020; 13(18). https://doi.org/10.3390/ma13184059 DOI: https://doi.org/10.3390/ma13184059

Şahin M, Erdoğan ST, Bayer Ö. Production of lightweight aerated alkali-activated slag pastes using hydrogen peroxide. Construction and Building Materials 2018; 181: 106-118. https://doi.org/10.1016/j.conbuildmat.2018.05.267 DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.267

Wanga S, Li H, Zou S, Zhang G. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy and Buildings 2020; 226: 110358. https://doi.org/10.1016/j.enbuild.2020.110358 DOI: https://doi.org/10.1016/j.enbuild.2020.110358

Gao H, Liu H, Liao L, Mei L, Zhang F, Zhang L, Li S, Lv G. A bifunctional hierarchical porous kaolinite geopolymer with good performance in thermal and sound insulation. Construction and Building Materials 2020; 251: 118888. https://doi.org/10.1016/j.conbuildmat.2020.118888 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118888

Zou S, Li H, Wang S, Jiang R, Zou J, Zhang X, Liu L, Zhang G. Experimental research on an innovative sawdust biomass-based insulation material for buildings. Journal of Cleaner Production 2020; 260: 121029. https://doi.org/10.1016/j.jclepro.2020.121029 DOI: https://doi.org/10.1016/j.jclepro.2020.121029

Li T, Wang Z, Zhou T, He Y, Huang F. Preparation and properties of magnesium phosphate cement foam concrete with H2O2 as foaming agent. Construction and Building Materials 2019; 205: 566-573. https://doi.org/10.1016/j.conbuildmat.2019.02.022 DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.022

Huang Z, Zhang T, Wen Z. Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes. Construction and Building Materials 2015; 79: 390-396. https://doi.org/10.1016/j.conbuildmat.2015.01.051 DOI: https://doi.org/10.1016/j.conbuildmat.2015.01.051

Novais RM, Buruberri LH, Ascensão G, Seabra MP, Labrincha JA. Porous biomass fly ash-based geopolymers with tailored thermal conductivity. Journal of Cleaner Production 2016; 119: 99-107. https://doi.org/10.1016/j.jclepro.2016.01.083 DOI: https://doi.org/10.1016/j.jclepro.2016.01.083

Bai C, Franchin G, Elsayed H, Zaggia A, Conte L, Li H, Colombo P. High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment. Journal of Materials Research 2017; 32(17): 3251-3259. https://doi.org/10.1557/jmr.2017.127 DOI: https://doi.org/10.1557/jmr.2017.127

Bai C, Ni T, Wang Q, Li H, Colombo P. Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent. Journal of the European Ceramic Society 2018; 38(2): 799-805. https://doi.org/10.1016/j.jeurceramsoc.2017.09.021 DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.09.021

Shao N-N, Zhang Y-B, Liu Z, Wang D-M, Zhang Z-T. Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strength. Construction and Building Materials 2018; 185: 567-573. https://doi.org/10.1016/j.conbuildmat.2018.07.077 DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.077

Xu F, Gu G, Zhang W, Wang H, Huang X, Zhu J. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceramics International 2018; 44(16): 19989-19997. https://doi.org/10.1016/j.ceramint.2018.07.267 DOI: https://doi.org/10.1016/j.ceramint.2018.07.267

Pan Z, Li H, Liu W. Preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Construction and Building Materials 2014; 72: 256-261. https://doi.org/10.1016/j.conbuildmat.2014.08.078 DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.078

Wang Z, Gao H, Liu H, Liao L, Mei L, Lv G, Zhu G, Huang D. Inorganic thermal insulation material prepared from pitchstone. Journal of Building Engineering 2020; 32: 101745. https://doi.org/10.1016/j.jobe.2020.101745 DOI: https://doi.org/10.1016/j.jobe.2020.101745

Palmero P, Formia A, Antonaci P, Brini S, Tulliani J-M. Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization. Ceramics International 2015; 41(10): 12967-12979. https://doi.org/10.1016/j.ceramint.2015.06.140 DOI: https://doi.org/10.1016/j.ceramint.2015.06.140

Tsaousi GM, Profitis L, Douni I, Chatzitheodorides E, Panias D. Development of lightweight insulating building materials from perlite wastes. Materiales de Construcción 2019; 69(333): 175. https://doi.org/10.3989/mc.20198.12517 DOI: https://doi.org/10.3989/mc.20198.12517

Shuai Q, Xu Z, Yao Z, Chen X, Jiang Z, Peng X, An R, Li Y, Jiang X, Li H. Fire resistance of phosphoric acid-based geopolymer foams fabricated from metakaolin and hydrogen peroxide. Materials Letters 2020; 263: 127228. https://doi.org/10.1016/j.matlet.2019.127228 DOI: https://doi.org/10.1016/j.matlet.2019.127228

Cui Y, Wang Q, Xue J. Novel foam insulation material produced by calcined phosphogypsum and H2O2. Journal of Materials in Civil Engineering 2020; 32(12): 04020379. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003473 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003473

Prud’homme E, Michaud P, Joussein E, Peyratout C, Smith A, Arrii-Clacens S, Clacens JM, Rossignol S. Silica fume as porogent agent in geo-materials at low temperature. Journal of the European Ceramic Society 2010; 30(7): 1641-1648. https://doi.org/10.1016/j.jeurceramsoc.2010.01.014 DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.01.014

Henon J, Alzina A, Absi J, Smith DS, Rossignol S. Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation. Journal of Porous Materials 2012; 20(1): 37-46. https://doi.org/10.1007/s10934-012-9572-3 DOI: https://doi.org/10.1007/s10934-012-9572-3

Prud’homme E, Joussein E, Rossignol S. Use of silicon carbide sludge to form porous alkali-activated materials for insulating application. The European Physical Journal Special Topics 2015; 224(9): 1725-1735. https://doi.org/10.1140/epjst/e2015-02494-7 DOI: https://doi.org/10.1140/epjst/e2015-02494-7

Peng X, Li H, Shuai Q, Wang L. Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2. Materials (Basel) 2020; 13(3). https://doi.org/10.3390/ma13030535 DOI: https://doi.org/10.3390/ma13030535

Abdollahnejad Z, Pacheco-Torgal F, Félix T, Tahri W, Barroso Aguiar J. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Construction and Building Materials 2015; 80: 18-30. https://doi.org/10.1016/j.conbuildmat.2015.01.063 DOI: https://doi.org/10.1016/j.conbuildmat.2015.01.063

Yuan B, Straub C, Segers S, Yu QL, Brouwers HJH. Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International 2017; 43(8): 6039-6047. https://doi.org/10.1016/j.ceramint.2017.01.144 DOI: https://doi.org/10.1016/j.ceramint.2017.01.144

Ul Haq E, Padmanabhan SK, Licciulli A. In-situ carbonation of alkali activated fly ash geopolymer. Construction and Building Materials 2014; 66: 781-786. https://doi.org/10.1016/j.conbuildmat.2014.06.012 DOI: https://doi.org/10.1016/j.conbuildmat.2014.06.012

Roviello G, Ricciotti L, Molino AJ, Menna C, Ferone C, Asprone D, Cioffi R, Ferrandiz-Mas V, Russo P, Tarallo O. Hybrid fly ash-based geopolymeric foams: Microstructural, thermal and mechanical properties. Materials (Basel) 2020; 13(13). https://doi.org/10.3390/ma13132919 DOI: https://doi.org/10.3390/ma13132919

Zhang Z, Provis JL, Reid A, Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cement and Concrete Composites 2015; 62: 97-105. https://doi.org/10.1016/j.cemconcomp.2015.03.013 DOI: https://doi.org/10.1016/j.cemconcomp.2015.03.013

Wang T, Gao X, Wang J. Preparation of foamed phosphogypsum lightweight materials by incorporating cementitious additives. Materials Science 2019; 25(3): 340-347. https://doi.org/10.5755/j01.ms.25.3.19910 DOI: https://doi.org/10.5755/j01.ms.25.3.19910

Yang K-H, Lee K-H, Song J-K, Gong M-H. Properties and sustainability of alkali-activated slag foamed concrete. Journal of Cleaner Production 2014; 68: 226-233. https://doi.org/10.1016/j.jclepro.2013.12.068 DOI: https://doi.org/10.1016/j.jclepro.2013.12.068

Wang Y, Zheng T, Zheng X, Liu Y, Darkwa J, Zhou G. Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Construction and Building Materials 2020; 251: 118960. https://doi.org/10.1016/j.conbuildmat.2020.118960 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118960

Gencel O, Nodehi M, Yavuz Bayraktar O, Kaplan G, Benli A. Gholampour A, Ozbakkaloglu T. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study. Construction and Building Materials 2022; 326: 126861. https://doi.org/10.1016/j.conbuildmat.2022.126861 DOI: https://doi.org/10.1016/j.conbuildmat.2022.126861

Wang J-Y, Zhang M-H, Li W, Chia K-S, Liew RJY. Stability of cenospheres in lightweight cement composites in terms of alkali–silica reaction. Cement and Concrete Research 2012; 42(5): 721-727. https://doi.org/10.1016/j.cemconres.2012.02.010 DOI: https://doi.org/10.1016/j.cemconres.2012.02.010

Brooks AL, Zhou H, Hanna D. Comparative study of the mechanical and thermal properties of lightweight cementitious composites. Construction and Building Materials 2018; 159: 316-328. https://doi.org/10.1016/j.conbuildmat.2017.10.102 DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.102

Pavlík Z, Pavlíková M, Záleská M, Vyšvařil M, Žižlavský T. Lightweight thermal efficient repair mortars with expanded glass (EG) for repairing historical buildings: The effect of binder type and EG aggregate dosage on their performance. Energy and Buildings 2022; 276: 112526. https://doi.org/10.1016/j.enbuild.2022.112526 DOI: https://doi.org/10.1016/j.enbuild.2022.112526

Yun TS, Jeong YJ, Han T-S, Youm K-S. Evaluation of thermal conductivity for thermally insulated concretes. Energy and Buildings 2013; 61: 125-132. https://doi.org/10.1016/j.enbuild.2013.01.043 DOI: https://doi.org/10.1016/j.enbuild.2013.01.043

Remesar JC, Simon F, Vera S, Lopez M. Improved balance between compressive strength and thermal conductivity of insulating and structural lightweight concretes for low rise construction. Construction and Building Materials 2020; 247: 118448. https://doi.org/10.1016/j.conbuildmat.2020.118448 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118448

Wongsa A, Sata V, Nuaklong P, Chindaprasirt P. Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete. Construction and Building Materials 2018; 188: 1025-1034. https://doi.org/10.1016/j.conbuildmat.2018.08.176 DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.176

Koksal F, Sahin Y, Gencel O. Influence of expanded vermiculite powder and silica fume on properties of foam concretes. Construction and Building Materials 2020; 257: 119547. https://doi.org/10.1016/j.conbuildmat.2020.119547 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119547

Jiang J, Yang Y, Hou L, Lu Z, Li J, Niu Y. Facile preparation and hardened properties of porous geopolymer-supported zeolite based on swelled bentonite. Construction and Building Materials 2019; 228: 117040. https://doi.org/10.1016/j.conbuildmat.2019.117040 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117040

Lu Z, Zhang J, Sun G, Xu B, Li Z, Gong C. Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique. Energy 2015; 82: 43-53. https://doi.org/10.1016/j.energy.2014.12.043 DOI: https://doi.org/10.1016/j.energy.2014.12.043

Gencel O, Yavuz Bayraktar O, Kaplan G, Arslan O, Nodehi M, Benli A, Gholampour A, Ozbakkaloglu T. Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties. Construction and Building Materials 2022; 320: 126187. https://doi.org/10.1016/j.conbuildmat.2021.126187 DOI: https://doi.org/10.1016/j.conbuildmat.2021.126187

Wang L, Liu P, Jing Q, Liu Y, Wang W, Zhang Y, Li Z. Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Construction and Building Materials 2018; 188: 747-757. https://doi.org/10.1016/j.conbuildmat.2018.08.054 DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.054

Mounanga P, Gbongbon W, Poullain P, Turcry P. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cement and Concrete Composites 2008; 30(9): 806-814. https://doi.org/10.1016/j.cemconcomp.2008.06.007 DOI: https://doi.org/10.1016/j.cemconcomp.2008.06.007

Kismi M, Poullain P, Mounanga P. Transient thermal response of lightweight cementitious composites made with polyurethane foam waste. International Journal of Thermophysics 2012; 33(7): 1239-1258. https://doi.org/10.1007/s10765-012-1244-7 DOI: https://doi.org/10.1007/s10765-012-1244-7

Hannawi K, Prince W, Kamali-Bernard S. Effect of thermoplastic aggregates incorporation on physical, mechanical and transfer behaviour of cementitious materials. Waste and Biomass Valorization 2010; 1(2): 251-259. https://doi.org/10.1007/s12649-010-9021-y DOI: https://doi.org/10.1007/s12649-010-9021-y

Akçaözoğlu S, Akçaözoğlu K, Atiş CD. Thermal conductivity, compressive strength and ultrasonic wave velocity of cementitious composite containing waste PET lightweight aggregate (WPLA). Composites Part B: Engineering 2013; 45(1): 721-726. https://doi.org/10.1016/j.compositesb.2012.09.012 DOI: https://doi.org/10.1016/j.compositesb.2012.09.012

Ferrándiz-Mas V, Bond T, García-Alcocel E, Cheeseman CR. Lightweight mortars containing expanded polystyrene and paper sludge ash. Construction and Building Materials 2014; 61: 285-292. https://doi.org/10.1016/j.conbuildmat.2014.03.028 DOI: https://doi.org/10.1016/j.conbuildmat.2014.03.028

Colangelo F, Roviello G, Ricciotti L, Ferrándiz-Mas V, Messina F, Ferone C, Tarallo O, Cioffi R, Cheeseman CR. Mechanical and thermal properties of lightweight geopolymer composites. Cement and Concrete Composites 2018; 86: 266-272. https://doi.org/10.1016/j.cemconcomp.2017.11.016 DOI: https://doi.org/10.1016/j.cemconcomp.2017.11.016

Hannawi K, Prince-Agbodjan W. Transfer behaviour and durability of cementitious mortars containing polycarbonate plastic wastes. European Journal of Environmental and Civil Engineering 2014; 19(4): 467-481. https://doi.org/10.1080/19648189.2014.960100 DOI: https://doi.org/10.1080/19648189.2014.960100

Posi P, Ridtirud C, Ekvong C, Chammanee D, Janthowong K, Chindaprasirt P. Properties of lightweight high calcium fly ash geopolymer concretes containing recycled packaging foam. Construction and Building Materials 2015; 94: 408-413. https://doi.org/10.1016/j.conbuildmat.2015.07.080 DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.080

Wongsa A, Sata V, Nematollahi B, Sanjayan J, Chindaprasirt P. Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. Journal of Cleaner Production 2018; 195: 1069-1080. https://doi.org/10.1016/j.jclepro.2018.06.003 DOI: https://doi.org/10.1016/j.jclepro.2018.06.003

Senhadji Y, Siad H, Escadeillas G, Benosman AS, Chihaoui R, Mouli M, Lachemi M. Physical, mechanical and thermal properties of lightweight composite mortars containing recycled polyvinyl chloride. Construction and Building Materials 2019; 195: 198-207. https://doi.org/10.1016/j.conbuildmat.2018.11.070 DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.070

Kaya A, Kar F. Properties of concrete containing waste expanded polystyrene and natural resin. Construction and Building Materials 2016; 105: 572-578. https://doi.org/10.1016/j.conbuildmat.2015.12.177 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.177

Duan P, Song L, Yan C, Ren D, Li Z. Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceramics International 2017; 43(6): 5115-5120. https://doi.org/10.1016/j.ceramint.2017.01.025 DOI: https://doi.org/10.1016/j.ceramint.2017.01.025

Sayadi AA, Tapia JV, Neitzert TR, Clifton GC. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Construction and Building Materials 2016; 112: 716-724. https://doi.org/10.1016/j.conbuildmat.2016.02.218 DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.218

Rao YX, Liang CF, Xia Y. Experimental research on physical and mechanical properties of EPS recycled concrete. Applied Mechanics and Materials 2012; 204-208: 4022-4025. https://doi.org/10.4028/www.scientific.net/AMM.204-208.4022 DOI: https://doi.org/10.4028/www.scientific.net/AMM.204-208.4022

Dixit A, Pang SD, Kang S-H, Moon J. Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation. Cement and Concrete Composites 2019; 102: 185-197. https://doi.org/10.1016/j.cemconcomp.2019.04.023 DOI: https://doi.org/10.1016/j.cemconcomp.2019.04.023

Kunthawatwong R, Sylisomchanh L, Pangdaeng S, Wongsa A, Sata V, Sukontasukkul P, Chindaprasirt P. Recycled non-biodegradable polyethylene terephthalate waste as fine aggregate in fly ash geopolymer and cement mortars. Construction and Building Materials 2022; 328: 127084. https://doi.org/10.1016/j.conbuildmat.2022.127084 DOI: https://doi.org/10.1016/j.conbuildmat.2022.127084

de Fátima Júlio M, Soares A, Ilharco LM, Flores-Colen I, de Brito J. Aerogel-based renders with lightweight aggregates: Correlation between molecular/pore structure and performance. Construction and Building Materials 2016; 124: 485-495. https://doi.org/10.1016/j.conbuildmat.2016.07.103 DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.103

Kim S, Seo J, Cha J, Kim S. Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Construction and Building Materials 2013; 40: 501-505. https://doi.org/10.1016/j.conbuildmat.2012.11.046 DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.046

Gao T, Jelle BP, Gustavsen A, Jacobsen S. Aerogel-incorporated concrete: An experimental study. Construction and Building Materials 2014; 52: 130-136. https://doi.org/10.1016/j.conbuildmat.2013.10.100 DOI: https://doi.org/10.1016/j.conbuildmat.2013.10.100

Hanif A, Diao S, Lu Z, Fan T, Li Z. Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres – Mechanical and thermal insulating properties. Construction and Building Materials 2016; 116: 422-430. https://doi.org/10.1016/j.conbuildmat.2016.04.134 DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.134

Wan Y, Wang J, Li Z. Effect of SiO2 aerogel on the properties of inorganic cementing materials. KSCE Journal of Civil Engineering 2022; 26(8): 3216-3225. https://doi.org/10.1007/s12205-022-1983-3 DOI: https://doi.org/10.1007/s12205-022-1983-3

Li D, Wang D, Cui Y. Study on pore structure and thermal conductivity of aerogel enhanced porous geopolymers. Journal of Thermal Analysis and Calorimetry 2020. https://doi.org/10.1007/s10973-020-10389-4 DOI: https://doi.org/10.1007/s10973-020-10389-4

Ng S, Jelle BP, Stæhli T. Calcined clays as binder for thermal insulating and structural aerogel incorporated mortar. Cement and Concrete Composites 2016; 72: 213-221. https://doi.org/10.1016/j.cemconcomp.2016.06.007 DOI: https://doi.org/10.1016/j.cemconcomp.2016.06.007

Ng S, Jelle BP, Sandberg LIC, Gao T, Wallevik ÓH. Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials 2015; 77: 307-316. https://doi.org/10.1016/j.conbuildmat.2014.12.064 DOI: https://doi.org/10.1016/j.conbuildmat.2014.12.064

Tan TH, Shah SN, Ng CC, Putra A, Othman MN, Mo KH. Insulating foamed lightweight cementitious composite with co-addition of micro-sized aerogel and hydrogen peroxide. Construction and Building Materials 2022; 360: 129485. https://doi.org/10.1016/j.conbuildmat.2022.129485 DOI: https://doi.org/10.1016/j.conbuildmat.2022.129485

Liu Z, Zang C, Hu D, Zhang Y, Lv H, Liu C, She W. Thermal conductivity and mechanical properties of a shape-stabilized paraffin/recycled cement paste phase change energy storage composite incorporated into inorganic cementitious materials. Cement and Concrete Composites 2019; 99: 165-174. https://doi.org/10.1016/j.cemconcomp.2019.03.013 DOI: https://doi.org/10.1016/j.cemconcomp.2019.03.013

Ricklefs A, Thiele AM, Falzone G, Sant G, Pilon L. Thermal conductivity of cementitious composites containing microencapsulated phase change materials. International Journal of Heat and Mass Transfer 2017; 104: 71-82. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.013 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.013

Thiele AM, Wei Z, Falzone G, Young B, Neithalath N, Sant G, Pilon L. Figure of merit for the thermal performance of cementitious composites containing phase change materials. Cement and Concrete Composites 2016. https://doi.org/10.1016/j.cemconcomp.2015.10.023 DOI: https://doi.org/10.1016/j.cemconcomp.2015.10.023

Xu B, Li Z. Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material. Applied Energy 2014; 121: 114-122. https://doi.org/10.1016/j.apenergy.2014.02.007 DOI: https://doi.org/10.1016/j.apenergy.2014.02.007

Shadnia R, Zhang L, Li P. Experimental study of geopolymer mortar with incorporated PCM. Construction and Building Materials 2015; 84: 95-102. https://doi.org/10.1016/j.conbuildmat.2015.03.066 DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.066

Aguayo M, Das S, Castro C, Kabay N, Sant G, Neithalath N. Porous inclusions as hosts for phase change materials in cementitious composites: Characterization, thermal performance, and analytical models. Construction and Building Materials 2017; 134: 574-584. https://doi.org/10.1016/j.conbuildmat.2016.12.185 DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.185

Mankel C, Caggiano A, Ukrainczyk N, Koenders E. Thermal energy storage characterization of cement-based systems containing microencapsulated-PCMs. Construction and Building Materials 2019; 199: 307-320. https://doi.org/10.1016/j.conbuildmat.2018.11.195 DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.195

Miliozzi A, Chieruzzi M, Torre L. Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material. Applied Energy 2019; 250: 1023-1035. https://doi.org/10.1016/j.apenergy.2019.05.090 DOI: https://doi.org/10.1016/j.apenergy.2019.05.090

Jayalath A, Nicolas RS, Sofi M, Shanks R, Ngo T, Aye L, Mendis P. Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Construction and Building Materials 2016; 120: 408-417. https://doi.org/10.1016/j.conbuildmat.2016.05.116

Wang Z, Su H, Zhao S, Zhao N. Influence of phase change material on mechanical and thermal properties of clay geopolymer mortar. Construction and Building Materials 2016; 120: 329-334. https://doi.org/10.1016/j.conbuildmat.2016.05.091 DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.091

Ramakrishnan S, Wang X, Sanjayan J, Petinakis E, Wilson J. Development of thermal energy storage cementitious composites (TESC) containing a novel paraffin/hydrophobic expanded perlite composite phase change material. Solar Energy 2017; 158: 626-635. https://doi.org/10.1016/j.solener.2017.09.064 DOI: https://doi.org/10.1016/j.solener.2017.09.064

Gencel O, Sarı A, Subasi S, Bayram M, Danish A, Marasli M, Hekimoğlu G, Ustaoglu A, Ozbakkaloglu T. Light transmitting glass fiber reinforced cementitious composite containing microencapsulated phase change material for thermal energy saving. Construction and Building Materials 2022; 359: 129467. https://doi.org/10.1016/j.conbuildmat.2022.129467 DOI: https://doi.org/10.1016/j.conbuildmat.2022.129467

Jayalath A, San Nicolas R, Sofi M, Shanks R, Ngo T, Aye L, Mendis P. Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Construction and Building Materials 2016; 120: 408-417. https://doi.org/10.1016/j.conbuildmat.2016.05.116 DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.116

Cseh Á, Balázs GL, Kekanović M, Miličić IM. Effect of SCMs on heat transfer properties of LWAC. Journal of Thermal Analysis and Calorimetry 2020. https://doi.org/10.1007/s10973-020-09631-w DOI: https://doi.org/10.1007/s10973-020-09631-w

Johnson Alengaram U, Al Muhit BA, bin Jumaat MZ, Jing MLY. A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Materials and Design 2013; 51: 522-529. https://doi.org/10.1016/j.matdes.2013.04.078 DOI: https://doi.org/10.1016/j.matdes.2013.04.078

Aliabdo AA, Abd Elmoaty AEM, AbdElbaset MM. Utilization of waste rubber in non-structural applications. Construction and Building Materials 2015; 91: 195-207. https://doi.org/10.1016/j.conbuildmat.2015.05.080 DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.080

Tedjditi AK, Ghomari F, Taleb O, Belarbi R, Tarik Bouhraoua R. Potential of using virgin cork as aggregates in development of new lightweight concrete. Construction and Building Materials 2020; 265: 120734. https://doi.org/10.1016/j.conbuildmat.2020.120734 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120734

Salem T, Fois M, Omikrine-Metalssi O, Manuel R, Fen-Chong T. Thermal and mechanical performances of cement-based mortars reinforced with vegetable synthetic sponge wastes and silica fume. Construction and Building Materials 2020; 264: 120213. https://doi.org/10.1016/j.conbuildmat.2020.120213 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120213

Bouguerra A, Ledhem A, Barquin FD, Dheilly RM, Que´neudec M. Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates. Cement and Concrete Research 1998; 28(8): 1179-1190. https://doi.org/10.1016/S0008-8846(98)00075-1 DOI: https://doi.org/10.1016/S0008-8846(98)00075-1

Borges A, Flores-Colen I, de Brito J. Physical and mechanical performance of cement-based renders with different contents of fly ash, expanded cork granules and expanded clay. Construction and Building Materials 2018; 191: 535-543. https://doi.org/10.1016/j.conbuildmat.2018.10.043 DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.043

Novais RM, Senff L, Carvalheiras J, Seabra MP, Pullar RC, Labrincha JA. Sustainable and efficient cork - inorganic polymer composites: An innovative and eco-friendly approach to produce ultra-lightweight and low thermal conductivity materials. Cement and Concrete Composites 2019; 97: 107-117. https://doi.org/10.1016/j.cemconcomp.2018.12.024 DOI: https://doi.org/10.1016/j.cemconcomp.2018.12.024

Novais RM, Carvalheiras J, Senff L, Lacasta AM, Cantalapiedra IR, Giro-Paloma J, Seabra MP, Labrincha JA. Multifunctional cork – alkali-activated fly ash composites: A sustainable material to enhance buildings’ energy and acoustic performance. Energy and Buildings 2020; 210: 109739. https://doi.org/10.1016/j.enbuild.2019.109739 DOI: https://doi.org/10.1016/j.enbuild.2019.109739

Pokorný J, Ševčík R, Šál J, Fiala L, Zárybnická L, Podolka L. Bio-based aggregate in the production of advanced thermal-insulating concrete with improved acoustic performance. Construction and Building Materials 2022; 358: 129436. https://doi.org/10.1016/j.conbuildmat.2022.129436 DOI: https://doi.org/10.1016/j.conbuildmat.2022.129436

Rim KA, Ledhem A, Douzane O, Dheilly RM, Queneudec M. Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites 1999; 21(4): 269-276. https://doi.org/10.1016/S0958-9465(99)00008-6 DOI: https://doi.org/10.1016/S0958-9465(99)00008-6

Lakhiar MT, Kong SY, Bai Y, Susilawati S, Zahidi I, Paul SC, Raghunandan ME. Thermal and mechanical properties of concrete incorporating silica fume and waste rubber powder. Polymers (Basel) 2022; 14(22). https://doi.org/10.3390/polym14224858 DOI: https://doi.org/10.3390/polym14224858

Benazzouk A, Douzane O, Mezreb K, Laidoudi B, Quéneudec M. Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modelling. Construction and Building Materials 2008; 22(4): 573-579. https://doi.org/10.1016/j.conbuildmat.2006.11.011 DOI: https://doi.org/10.1016/j.conbuildmat.2006.11.011

Guo H, Wang P, Li Q, Liu G, Fan Q, Yue G, Song S, Zheng S, Wang L, Guo Y. Properties of light cementitious composite materials with waste wood chips. Materials 2022; 15(23): 8669. https://doi.org/10.3390/ma15238669 DOI: https://doi.org/10.3390/ma15238669

Downloads

Published

2023-08-04

How to Cite

Wu, C. ., Liu, S. ., Guo, J. ., Ma, H. ., & He, L. (2023). Relationship between Thermal Conductivity and Compressive Strength of Insulation Concrete: A Review. Journal of Research Updates in Polymer Science, 12, 80–96. https://doi.org/10.6000/1929-5995.2023.12.08

Issue

Section

Articles