Ether Bond Formation in Waste Biomass–Derived, Value-Added Technical Hardwood Kraft Lignin Using Glycolic Acid

Authors

  • Saman Ghahri Department of Wood and Paper Science, Kyungpook National University, Daegu, 41566, Republic of Korea
  • Byung-Dae Park Department of Wood and Paper Science, Kyungpook National University, Daegu, 41566, Republic of Korea https://orcid.org/0000-0002-9802-7855

DOI:

https://doi.org/10.6000/1929-5995.2023.12.14

Keywords:

Waste black liquor, hardwood kraft lignin, bio-materials, bio-adhesives, eco-friendly products, sustainability

Abstract

Ether bond formation in technical hardwood kraft lignin (THKL) by crosslinking using glycolic acid was investigated for bio-adhesive applications. Industrial hardwood kraft black liquor was used to extract the THKL utilized by acidification. Chemical and thermal properties of the THKL with and without crosslinking were analyzed by Fourier transform infrared (FTIR) spectroscopy, solid-state 13C cross-polarization/magic angle spinning nuclear magnetic resonance (13C CP/MAS NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FTIR results revealed a new peak corresponding to the ether bond and hemiacetal formation due to crosslinking at 1075 cm-1 and 1324 cm-1. 13C CP/MAS NMR spectra revealed the presence of a higher number of ether bonds due to the reduced aromatic and aliphatic hydroxyl groups in THKL and new bonds formed at 62-64 ppm and 168-191 ppm due to crosslinking. XPS results revealed that new bonds were formed between glycolic acid and THKL, leading to increased atomic oxygen percentage and carbon–oxygen bonds in crosslinked THKL detected by peak intensity changes at 287.7 and 288.8 related to O–C–O and O–C=O. Also, the oxygen content increased from 14.88% to 31.76% due to bond formation. GPC confirmed a higher molecular weight and broader molecular-weight distribution of THKL. DSC and TGA curves of crosslinked THKL revealed exothermic behavior, high thermal stability, and low thermal degradation rate. Owing to a significant amount of kraft black liquor being generated by wood pulp industries and attractive chemical properties of THKL, THKL demonstrates promise as a raw material to produce green, sustainable bio-adhesives via the crosslinking of its different hydroxyl groups using glycolic acid.

References

Suota MJ, da Silva TA, Zawadzki SF, Sassaki GL, Hansel FA, Paleologou M, Ramos LP. Chemical and Structural Characterization of Hardwood and Softwood Lignoforce™ Lignins. Ind Crops and Prod 2021; 173: 114138. https://doi.org/10.1016/j.indcrop.2021.114138 DOI: https://doi.org/10.1016/j.indcrop.2021.114138

Lawoko M, Samec JSM. Kraft lignin valorization: Biofuels and thermoset materials in focus. Curr Opin Green Sustain Chem 2023; 40: 100738. https://doi.org/10.1016/j.cogsc.2022.100738 DOI: https://doi.org/10.1016/j.cogsc.2022.100738

Giummarella N, Lindén PA, Areskogh D, Lawoko M. Fractional Profiling of Kraft Lignin Structure: Unravelling Insights on Lignin Reaction Mechanisms. ACS Sustain Chem Eng 2020; 8: 1112-1120.

http://dx.doi.org/10.1021/acssuschemeng.9b06027 DOI: https://doi.org/10.1021/acssuschemeng.9b06027

Crestini C, Lange H, Sette M, Argyropoulos DS. On the Structure of Softwood Kraft Lignin. Green Chem 2017; 19: 4104-4121. https://doi.org/10.1039/C7GC01812F DOI: https://doi.org/10.1039/C7GC01812F

Van Nieuwenhove I, Renders T, Lauwaert J, De Roo T, De Clercq J, Verberckmoes A. Biobased Resins Using Lignin and Glyoxal. ACS Sustain Chem Eng 2020; 8: 18789-18809. https://doi.org/10.1021/acssuschemeng.0c07227 DOI: https://doi.org/10.1021/acssuschemeng.0c07227

Zheng L, Tao L, Li Y, Zhang X, Xu Y, Li J, Gao Q. Performance of soybean protein adhesive cross-linked by lignin and cuprum. J Clean Prod 2022; 366: 132906. https://doi.org/10.1016/j.jclepro.2022.132906 DOI: https://doi.org/10.1016/j.jclepro.2022.132906

Ding C, Li N, Chen Z, Zhang Y. Preparation of highly water-resistant wood adhesives using ECH as a crosslinking agent. e-polymers 2022; 22:99-107. https://doi.org/10.1515/epoly-2022-0010 DOI: https://doi.org/10.1515/epoly-2022-0010

De Hoyos-Martínez PL, Robles E, Khoukh A, Charrier-El Bouhtoury F, Labidi J. Formulation of Multifunctional Materials Based on the Reaction of Glyoxalated Lignins and a Nanoclay/Nanosilicate. Biomacromolecules 2019; 20: 3535-3546. https://doi.org/10.1021/acs.biomac.9b00799 DOI: https://doi.org/10.1021/acs.biomac.9b00799

Ammar M, Khiari R, Belgacem MN, Elalou E. Thermal characterization and comparisons of lignin-formaldehyde and lignin-glyoxal adhesives. Mediterr J Chem 2014; 2: 731-737.

http://dx.doi.org/10.13171/mjc.2.6.2014.20.03.11 DOI: https://doi.org/10.13171/mjc.2.6.2014.20.03.11

Roy R, Jadhav B, Rahman MDS, Raynie DE. Characterization of residue from catalytic hydrothermal depolymerization of lignin. CRGSC 2021; 4: 100052. https://doi.org/10.1016/j.crgsc.2020.100052 DOI: https://doi.org/10.1016/j.crgsc.2020.100052

Sequeiros A, Serrano L, Briones R, Labidi L. Lignin Liquefaction Under Microwave Heating. J Appl Polym Sci 2013; 130: 3292-3298. https://doi.org/10.1002/app.39577 DOI: https://doi.org/10.1002/app.39577

Zhang Y, Zhu W, Lu Y, Gao Z, Gu J. Nano-scale blocking mechanism of MMT and its effects on the properties of polyisocyanate-modified soybean protein adhesive. Ind Crops Prod 2014; 57: 35-42. https://doi.org/10.1016/j.indcrop.2014.03.027 DOI: https://doi.org/10.1016/j.indcrop.2014.03.027

Ribca I, Jawerth ME, Brett JC, Lawoko M, Schwartzkopf M, Chumakov A, Roth SV, Johansson M. Exploring the Effects of Different Cross-Linkers on Lignin-Based Thermoset Properties and Morphologies. ACS Sustain Chem Eng 2021; 9: 1692-1702. https://doi.org/10.1021/acssuschemeng.0c07580 DOI: https://doi.org/10.1021/acssuschemeng.0c07580

Navarrete P, Pizzi A, Pasch H, Delmotte L. Study on Lignin-Glyoxal Reaction by MALDI-TOF and CP-MAS13C-NMR. J Adhes Sci Technol 2012; 26: 1069-1082. https://doi.org/10.1163/016942410X550030 DOI: https://doi.org/10.1163/016942410X550030

Wibowo ES, Park BD. The Role of Acetone-Fractionated Kraft Lignin Molecular Structure on Surface Adhesion to Formaldehyde-Based Resins. Int J Biol Macromol 2023; 225: 1449-1461. https://doi.org/10.1016/j.ijbiomac.2022.11.202 DOI: https://doi.org/10.1016/j.ijbiomac.2022.11.202

Lisperguer J, Perez P, Urizar S. Structure and Thermal Properties of Lignins: Characterization by Infrared Spectroscopy and Differential Scanning Calorimetry. J Chil Chem Soc 2009; 54: 460-463.

http://dx.doi.org/10.4067/S0717-97072009000400030 DOI: https://doi.org/10.4067/S0717-97072009000400030

Gordobil O, Egüés I, Llano-Ponte R, Labidi J. Physicochemical Properties of PLA Lignin Blends. Polym Degrad Stab 2014; 108: 330-338. https://doi.org/10.1016/j.polymdegradstab.2014.01.002 DOI: https://doi.org/10.1016/j.polymdegradstab.2014.01.002

Assumpção NRL, Lona LMF. Effect of Lignin without Surface Treatment in In Situ Methyl Methacrylate Miniemulsion Polymerization. ACS Sustain Chem Eng 2022; 10: 3219-3226. https://doi.org/10.1021/acssuschemeng.1c07467 DOI: https://doi.org/10.1021/acssuschemeng.1c07467

Zhen X, Cui X, Al-Haimi AANM, Wang X, Liang H, Xu Z, Wang Z. Fully bio-based epoxy resins from lignin and epoxidized soybean oil: Rigid-flexible, tunable properties and high lignin content. Int J Biol Macromol 2024; 254: 127760. https://doi.org/10.1016/j.ijbiomac.2023.127760 DOI: https://doi.org/10.1016/j.ijbiomac.2023.127760

Khan MA, Ashraf SM. Studies on Thermal Characterization of Lignin Substituted Phenol Formaldehyde Resin as Wood Adhesives. J Therm Anal 2007; 89: 993–1000. https://doi.org/10.1007/s10973-004-6844-4 DOI: https://doi.org/10.1007/s10973-004-6844-4

Downloads

Published

2023-11-20

How to Cite

Ghahri, S. ., & Park, B.-D. . (2023). Ether Bond Formation in Waste Biomass–Derived, Value-Added Technical Hardwood Kraft Lignin Using Glycolic Acid. Journal of Research Updates in Polymer Science, 12, 171–179. https://doi.org/10.6000/1929-5995.2023.12.14

Issue

Section

Special Issue: Polymer Science and Metallic Composites at the Forefront: Innovations in Biomedical Polymers and Nanotechnolog