Latent Heat Storage with Phase Change Materials (PCMs)

Authors

  • H. L. Zhang Department of Chemical Engineering, Chemical and Biochemical Process Technology and Control Section, Katholieke Universiteit Leuven, Heverlee, Belgium
  • J. Baeyens School of Engineering, University of Warwick, Coventry, UK
  • J. Degrève Department of Chemical Engineering, Chemical and Biochemical Process Technology and Control Section, Katholieke Universiteit Leuven, Heverlee, Belgium
  • F. Pitié Whittaker Engineering Ltd., Stonehaven, Scotland

DOI:

https://doi.org/10.6000/1929-6002.2013.02.04.5

Keywords:

Heat storage, Latent heat, Sensible heat, Phase change materials, Encapsulation

Abstract

Latent heat thermal energy storage with phase change materials (PCMs) is attractive since providing a high energy density storage due to the phase change by solidification/melting at constant temperature. Relative to sensible heat energy storage systems, latent heat storage with PCMs requires a smaller weight and volume of material for a given amount of captured/stored energy, and has the capacity to store heat of fusion at a constant or nearly constant temperature, thus maintaining a high and constant temperature difference between the heat exchanging surface and the PCMs.

The present review paper will summarize the required properties of PCMs, with their respective advantages and disadvantages; the current state of development and manufacturing; the development of PCM applications, including their incorporation into heat exchangers, insertion of a metal matrix into the PCM, the use of PCM dispersed with high conductivity particles. PCM uses will be illustrated through some case-studies.

References

Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev 2007; 11: 1388-13. http://dx.doi.org/10.1016/j.rser.2005.12.004

IEA, OECD. World energy outlook 2011. IEA, International Energy Agency: OECD, Paris 2011.

Zhang HL, Baeyens J, Degrève J, Cacères G. Concentrated solar power plants: Review and design methodology. Renew Sust Energ Rev 2013; 22: 466-81. http://dx.doi.org/10.1016/j.rser.2013.01.032

Fernandes D, Pitié F, Caceres G, Baeyens J. Thermal energy storage: “How previous findings determine current research priorities”. Energy 2012; 39: 246-57. http://dx.doi.org/10.1016/j.energy.2012.01.024

BERR. Heat Call for Evidence (No. URN 08/519). Energy Group, Department for Business, Enterprise and Regulatory Reform (BERR), London, UK 2008.

Carbon Trust. Carbon Trust Launches New Service to Help SMEs with Carbon Reduction 2010.

Ammar Y, Joyce S, Norman R, Wang Y, Roskilly AP. Low grade thermal energy sources and uses from the process industry in the UK. Appl Energy 2012; 89: 3-20. http://dx.doi.org/10.1016/j.apenergy.2011.06.003

Naish C, McCubbin I, Edberg O, Harfoot M. Outlook of energy storage technologies (Study No. IP/A/ITRE/FWC/ 2006-087/Lot 4/C1/SC2). European Parliament’s committee on Industry, Research and Energy 2008.

Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza LF. State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization. Renew Sust Energ Rev 2010; 14: 31-55. http://dx.doi.org/10.1016/j.rser.2009.07.035

Medrano M, Gil A, Martorell I, Potau X, Cabeza LF. State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies. Renew Sust Energ Rev 2010; 14: 56-72. http://dx.doi.org/10.1016/j.rser.2009.07.036

Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 2003; 23: 251-83. http://dx.doi.org/10.1016/S1359-4311(02)00192-8

Acem Z, Lopez J, Palomo Del Barrio E. KNO3/NaNO3 – Graphite materials for thermal energy storage at high temperature: Part I. – Elaboration methods and thermal properties. Appl Therm Eng 2010; 30: 1580-85. http://dx.doi.org/10.1016/j.applthermaleng.2010.03.013

Pincemin S, Py X, Olives R, Christ M, Oettinger O. Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. J Sol Energy Eng Trans-ASME 2008b; 130: 011005.1–011005.5.

Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Rene Sust Energ Rev 2010; 14: 615-28. http://dx.doi.org/10.1016/j.rser.2009.10.015

Castellón C, Medrano M, Roca J, Nogués M, Castell A, Cabeza LF. Use of Microencapsulated Phase Change Materials in Building Applications, in: Buildings X Proceedings. Presented at the Thermal Performance of the Exterior Envelopes of Whole Buildings X International Conference, ONRL, Clearwater Beach, Florida 2007.

Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: A critical review. Prog Nat Sci 2009; 19: 291-12. http://dx.doi.org/10.1016/j.pnsc.2008.07.014

Maruoka N, Akiyama T. Development of PCM for high temperature application in the steelmaking industry, in: Annex 17, Advanced Thermal Energy Storage Techniques – Feasibility Studies and Demonstration Projects. Presented at the 3rd Experts’ Meeting and Workshop of Annex 17, Tokyo 2002.

Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew Sust Energ Rev 2008; 12: 2438-58. http://dx.doi.org/10.1016/j.rser.2007.06.009

Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 2009; 13: 318-45. http://dx.doi.org/10.1016/j.rser.2007.10.005

Sharma SD, Sagara K. Latent Heat Storage Materials and Systems: A Review. Int J Green Energy 2005; 2: 1-56. http://dx.doi.org/10.1081/GE-200051299

Kenisarin MM. High-temperature phase change materials for thermal energy storage. Renew Sust Energ Rev 2010; 14: 955-70. http://dx.doi.org/10.1016/j.rser.2009.11.011

Perry's Chemical Engineers' Handbook, 8th. Edition, Mc.Graw-Hill, New York 2008

Laing D, Bahl C, Bauer T, Lehmann D, Steinmann W-D. Thermal energy storage for direct steam generation. Sol Energy 2011; 85: 627-33. http://dx.doi.org/10.1016/j.solener.2010.08.015

Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: A review. Renew Sust Energ Rev 2009; 13: 2225-44. http://dx.doi.org/10.1016/j.rser.2009.06.024

Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Comm Heat Mass Tran 2007; 34: 534-43. http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.02.005

Fukai J, Hamada Y, Morozumi Y, Miyatake O. Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int J Heat Mass Tran 2002; 45: 4781-92. http://dx.doi.org/10.1016/S0017-9310(02)00179-5

Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 2005; 43: 3067-74. http://dx.doi.org/10.1016/j.carbon.2005.06.042

Delgado M, Lázaro A, Mazo J, Marín JM, Zalba B. Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow. Appl Therm Eng 2012; 36: 370-77. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.050

Chen B, Wang X, Zeng R, Zhang Y, Wang X, Niu J, Li Y, Di H. An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux. Exp Therm Fluid Sci 2008; 32: 1638-46. http://dx.doi.org/10.1016/j.expthermflusci.2008.05.008

Pitié F, Zhao CY, Cáceres G. Thermo-mechanical analysis of ceramic encapsulated phase-change-material (PCM) particles. Environ Eng Sci 2011; 4: 2117-24. http://dx.doi.org/10.1039/c0ee00672f

Pitié F, Zhao CY, Baeyens J, Degrève J, Zhang HL. Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles. Appl Energy 2013; 109: 503-13. http://dx.doi.org/10.1016/j.apenergy.2012.12.048

Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: A review. Renew Sust Energ Rev 2011; 15: 1675-95. http://dx.doi.org/10.1016/j.rser.2010.11.018

Bridges NJ, Visser AE, Fox EB. Potential of Nanoparticle-Enhanced Ionic Liquids (NEILs) as Advanced Heat-Transfer Fluids. Energ Fuel 2011; 25: 4862-64. http://dx.doi.org/10.1021/ef2012084

Wu ZG, Zhao CY. Experimental investigations of porous materials in high temperature thermal energy storage systems. Sol Energy 2001; 85: 1371-80. http://dx.doi.org/10.1016/j.solener.2011.03.021

Luptowski B. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants 2011.

Downloads

Published

2013-11-28

How to Cite

Zhang, H. L., Baeyens, J., Degrève, J., & Pitié, F. (2013). Latent Heat Storage with Phase Change Materials (PCMs). Journal of Technology Innovations in Renewable Energy, 2(4), 340–351. https://doi.org/10.6000/1929-6002.2013.02.04.5

Issue

Section

Articles