Numerical Simulation of Quantum Efficiency of Cd0.8Zn0.2S /CIGS Solar Cells

Authors

  • E. Ihalane Laboratoire Materiaux et Energies Renouvelables (LMER), Universite Ibn Zohr Dép. Physique, Faculte des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Morocco
  • L. Atourki Laboratoire Materiaux et Energies Renouvelables (LMER), Universite Ibn Zohr Dép. Physique, Faculte des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Morocco
  • L. Alahyane Laboratoire Materiaux et Energies Renouvelables (LMER), Universite Ibn Zohr Dép. Physique, Faculte des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Morocco
  • H. Kirou Laboratoire Materiaux et Energies Renouvelables (LMER), Universite Ibn Zohr Dép. Physique, Faculte des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Morocco
  • L. Boulkaddat Laboratoire Materiaux et Energies Renouvelables (LMER), Universite Ibn Zohr Dép. Physique, Faculte des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Morocco
  • E. El hamri Laboratoire Materiaux et Energies Renouvelables (LMER), Universite Ibn Zohr Dép. Physique, Faculte des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Morocco
  • A. Ihlal Laboratoire Materiaux et Energies Renouvelables (LMER), Universite Ibn Zohr Dép. Physique, Faculte des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Morocco
  • K. Bouabid Laboratoire Materiaux et Energies Renouvelables (LMER), Universite Ibn Zohr Dép. Physique, Faculte des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Morocco

DOI:

https://doi.org/10.6000/1929-6002.2014.03.04.6

Keywords:

Photovoltaic parameters, CIGS solar cells, CdZnS, SCAPS-1D, Modeling.

Abstract

The paper presents a simulation study using the numerical simulator SCAPS-1D to model ZnO/Cd0.8Zn0.2S/CuIn(1-y)GaySe2/CuInSe2 structures. Effects of thickness of graded and ungraded CIGS absorbers and buffer layers on cell performance have been investigated with the aim to reach a higher efficiency. Quantum efficiency (QE) as function of wavelength and thickness of these layers was studied. The high efficiency of CIGS cells, in order of 22.05%, has reached with the absorbers thickness between 2μm and 3.5μm and with acceptor concentration of about 2.1016 cm3. Other hand, we investigate the effect of Cd0.8Zn0.2S ternary compound buffer on the top of the p-CIGS cell. These simulation results give some important indication to enable further development of multilayer thin-film solar cells based on CuInGaSe2 with Cd0.8Zn0.2S as buffer layer instead of CdS

References

Lundberg O, Edoff M, Stolt L. The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films 2005; 480-481: 520-525. http://dx.doi.org/10.1016/j.tsf.2004.11.080

Song J, Li SS, Huang CH, Crisalle OD, Anderson TJ. Device modeling and simulation of the performance of

Cu(In1-x,Gax)Se2 solar cells. Solid-State Electronics 2004; 48: 73-79. http://dx.doi.org/10.1016/S0038-1101(03)00289-2

Ahn BT, Larina L, Kim KH, Ahn SJ. Development of new buffer layers for Cu(In,Ga)Se2 solar cells. Pure Appl Chem 2008; 80(10): 2091-2102. http://dx.doi.org/10.1351/pac200880102091

Kumar V, Singh V, Sharma SK, Sharma TP. Structural and optical properties of sintered Cd1-xZnxS films. Optical Materials 1998; 11: 29-34. http://dx.doi.org/10.1016/S0925-3467(98)00028-7

Ichimura M. Calculation of band offsets at the CdS/SnS heterojunction. Solar Energy Materials & Solar Cells 2009; 93: 375-378. http://dx.doi.org/10.1016/j.solmat.2008.11.008

Kumar P, Misra A, Kumar D, Dhama N, Sharma TP, Dixit PN. Structural and optical properties of vacuum evaporated CdxZn1-xS thin films. Optical Materials 2004; 27: 261-264. http://dx.doi.org/10.1016/j.optmat.2004.04.008

Summers CJ, Tong W, Tran TK, Ogle W, Park W, Wagner BK. Photoluminescence properties of ZnS epilayers grown by metalorganic molecular beam epitaxy. Journal of Crystal Growth 1996; 159: 64-67. http://dx.doi.org/10.1016/0022-0248(95)00824-1

Razykov TM. Physical properties of ZnxCd1-xS films fabricated by CVD in hydrogen flow for use in solar cells. Solar Energy Materials 1985; 12: 237.

Nerat M. Copper–indium–gallium–selenide (CIGS) solar cells with localized back contacts for achieving high performance. Solar Energy Materials & Solar Cells 2012; 104: 152-158. http://dx.doi.org/10.1016/j.solmat.2012.05.020

Huang C-H. Effects of junction parameters on Cu(In,Ga)Se2 solar cells. Journal of Physics and Chemistry of Solids 2008; 69: 779-783. http://dx.doi.org/10.1016/j.jpcs.2007.07.118

Minemoto T, Julayhi J. Buffer-less Cu(In,Ga)Se2 solar cells by band offset control using novel transparent electrode. Current Applied Physics 2013; 13: 103-106. http://dx.doi.org/10.1016/j.cap.2012.06.019

Bouloufa A, Djessas K, Zegadi A. Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-1D. Thin Solid Films 2007; 515: 6285-6287. http://dx.doi.org/10.1016/j.tsf.2006.12.110

Amin N, Chelvanathan P, Hossain MI, Sopian K. Numerical Modelling of Ultra Thin Cu(In,Ga)Se2 Solar Cells. Energy Procedia 2012; 15: 293. http://dx.doi.org/10.1016/j.egypro.2012.02.034

Downloads

Published

2014-12-08

How to Cite

Ihalane, E., Atourki, L., Alahyane, L., Kirou, H., Boulkaddat, L., hamri, E. E., Ihlal, A., & Bouabid, K. (2014). Numerical Simulation of Quantum Efficiency of Cd0.8Zn0.2S /CIGS Solar Cells. Journal of Technology Innovations in Renewable Energy, 3(4), 195–198. https://doi.org/10.6000/1929-6002.2014.03.04.6

Issue

Section

Articles