Synthesis, Structural Characterization and Photocatalytic Activity of Iron-Doped Titanium Dioxide Nanopowders

Authors

  • Jordana H. Castillo Universidad de Las Américas Puebla, Sta. Catarina Martir, Cholula 72810 Puebla, Mexico
  • Francisco J. Rodriguez CIDETEQ. Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo 76703 Querétaro, México
  • Aurelio López-Malo Universidad de Las Américas Puebla, Sta. Catarina Martir, Cholula 72810 Puebla, Mexico
  • Enrique Sanchez-Mora Instituto de Fisica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue México, 72570, México
  • Marco A. Quiroz Universidad de Las Américas Puebla, Sta. Catarina Martir, Cholula 72810 Puebla, Mexico
  • Erick R. Bandala Universidad de Las Américas Puebla, Sta. Catarina Martir, Cholula 72810 Puebla, Mexico

DOI:

https://doi.org/10.6000/1929-6002.2015.04.01.1

Keywords:

Doped titanium dioxide, anatase, photocatalytic degradation, iron doping.

Abstract

Iron-doped TiO2 nanopowders with different doping amounts have been prepared by co-precipitation method followed by heat treatment. The obtained materials were structurally, morphologically and analytically characterized by X-ray diffraction (XRD), FT-Raman spectroscopy, diffuse reflectance spectroscopy (DRS) and energy dispersive X-ray spectroscopy (EDX) coupled to scanning electron microscopy (SEM). XRD analysis revealed the major presence of the anatasa crystalline phase for iron-doped and undoped TiO2. SEM confirmed particles sizes among the nanometer scale along with XRD data. The presence of iron ions was validated by EDX-SEM. Diffuse reflectance techniques were carried out to validate the shift of the band edge absorption spectrum of doped TiO2 nanoparticles towards the visible region and to confirm the presence of iron atoms in the TiO2 crystal lattice by the resulting variation of the band gap value of the doped materials. Photocatalytic activity of the nanoparticles under UV and visible radiation was evaluated by means of hydroxyl radicals production through indirect estimation using N,N-dimethyl-p-nitrosoaniline (PNDA)photo-discoloration experiments in aqueous dispersion. Samples containing 1.2 and 5.6 weight % Fe exhibited the highest activities in this study for both conditions.

References

Cernea M, Secu M, Secu CE, Baibarac M, Vasile BS. Structural and thermoluminescence properties of undoped and Fe-doped TiO2 nanopowders processed by sol-gel method. J Nanopart Res 2011; 13: 77-85. http://dx.doi.org/10.1007/s11051-010-0002-7

Popa M, Diamandescu L, Vasiliu F, et al. Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels. J Mat Sci 2009; 44: 358-64. http://dx.doi.org/10.1007/s10853-008-3147-3

Zhang Y, Lv F, Wu T, et al. F and Fe co-doped TiO2 with enhanced visible light photocatalytic activity. J Sol-Gel Sci Technol 2011; 59: 387-91. http://dx.doi.org/10.1007/s10971-011-2449-0

Bandala ER, Gelover S, Leal MT, Arancibia C, Jiménez A, Estrada CA. Solar photocatalytic degradation of Aldrín. Catal Today 2002; 76: 189-99. http://dx.doi.org/10.1016/S0920-5861(02)00218-3

Byrne JA, Fernández-Ibañez P, Dunlop PS, Alrousan DM, Hamilton JW. Photocatalytic enhancement for the solar disinfection of water: a review. Int J Photoen 2011. http://dx.doi.org/10.1155/2011/798051

Fernandez P, Blanco J, Sichel C, Malato S. Water disinfection by solar photocatalysis using compound parabolic collectors. Catal Today 2005; 101: 345-56. http://dx.doi.org/10.1016/j.cattod.2005.03.062

Villafán HI, Cuevas SA, Arancibia CA. Modeling the solar photocatalytic degradation of dyes. J Solar Ener Engin 2007; 129: 87-93. http://dx.doi.org/10.1115/1.2391255

Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B 2003; 130: 163-70.

Yu JC, Tang HY, Chan HC, et al. Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol-gel and reverse micelle methods. J Photochem Photobiol A: Chem 2002; 153: 211-9. http://dx.doi.org/10.1016/S1010-6030(02)00275-7

Abazovic ND, Mirenghi L, Jankovic IA, et al. Synthesis and Caracterization of Rutile TiO2 Nanopwders Doped with Iron Ions. Nano Res Lett 2009; 4: 518-25. http://dx.doi.org/10.1007/s11671-009-9274-1

Wang Z, Huang B, Dai Y, et al. Highly photocatalytic ZnO/In2O3 heterostructures synthesized by coprecipitation method. J Phys Chem C 2009; 113: 4612-7. http://dx.doi.org/10.1021/jp8107683

Wang C, Bahnemann D, Dohrmann J. A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem Commun 2000; 16: 1539-40. http://dx.doi.org/10.1039/b002988m

Cong Y, Zhang J, Chen F, Anpo M, He D. Preparation, photocatalytic activity and mechanism of nano TiO2, co-doped with nitrogen and iron (III). J Phys Chem C 2007; 111: 10618-23. http://dx.doi.org/10.1021/jp0727493

Naeem K, Ouyang F. Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light. Sci Direct Phys B 2009. http://dx.doi.org/10.1016/j.physb.2009.08.060

Sanchez-Mora E, Gomez E, Rojas E, Silva R. Morphological, optical and photocatalytic properties of TiO2-Fe2O3 multilayers. Solar Ener Mat Solar Cells 2007; 91: 1412-5. http://dx.doi.org/10.1016/j.solmat.2007.05.010

Ganesh I, Kumar PP, Gupta AK, et al. Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Process Appl Ceram 2012; 6: 21-36. http://dx.doi.org/10.2298/PAC1201021G

Cerro-Lopez M, Meas-Vong Y, Mendez-Rojas MA, Martinez-Huitle CA, Quiroz MA. Formation and growth of PbO2 inside TiO2 nanotubes for environmental applications. Appl Catal B: Environ 2014; 144: 174-81. http://dx.doi.org/10.1016/j.apcatb.2013.07.018

Balachandran U, Eror NG. Raman spectra of titanium dioxide. J Solid State Chem 1982; 42: 276-82. http://dx.doi.org/10.1016/0022-4596(82)90006-8

Liu F, He H, Zhang C. Novel iron titanate catalyst for the selective catalytic of NO with NH3 in the medium temperature range. Chem Comm 2008; 17: 2043-5. http://dx.doi.org/10.1039/b800143j

Liu Y, Liu H, Ma J, Wang X. Comparison of degradation mechanism of electrochemical oxidation of di- and tri-nitrophenols on bi-doped lead dioxide electrode: Effect of the molecular extructure. Appl Catal B: Environ2009; 91: 284-99. http://dx.doi.org/10.1016/j.apcatb.2009.05.039

Egerton TA, Kosa SAM, Christensen PA. Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Phys Chem Chem Phys 2006; 8: 398-406. http://dx.doi.org/10.1039/b507516e

Ohno T, Tabigawa K, Fujimara K, Izumi S, Matsumara M. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. J Photochem Photobiol A: Chem 1999; 127: 107-11. http://dx.doi.org/10.1016/S1010-6030(99)00128-8

Bajamundi CJE, Dalida PML, Wantala K, Khemthong P, Grisdanurak N. Effect of Fe3+ on the performance TiO2 mechanocoatedalumnia bead photocatalyst. Korean J Chem Engin 2011; 28: 1688-92. http://dx.doi.org/10.1007/s11814-011-0031-7

Lü X, Mou X, Wu J, et al. Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: Efficient electron injection and tranfer. Adv Funct Mat 2010; 20: 505-15. http://dx.doi.org/10.1002/adfm.200901292

Downloads

Published

2015-03-11

How to Cite

Castillo, J. H., Rodriguez, F. J., López-Malo, A., Sanchez-Mora, E., Quiroz, M. A., & Bandala, E. R. (2015). Synthesis, Structural Characterization and Photocatalytic Activity of Iron-Doped Titanium Dioxide Nanopowders. Journal of Technology Innovations in Renewable Energy, 4(1), 1–9. https://doi.org/10.6000/1929-6002.2015.04.01.1

Issue

Section

Articles