Physiological and Behavioral Changes of Water Buffalo in Hot and Cold Systems: Review

Authors

  • Ariadna Yáñez-Pizaña Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de México-Coyoacán, Calzada de Tlalpan 04910, CDMX, México
  • uis Alberto de la Cruz-Cruz Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de México-Coyoacán, Calzada de Tlalpan 04910, CDMX, México
  • Ariel Tarazona-Morales Departamento de Producción Animal, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, C.P. 050034, Medellín, Colombia
  • Patricia Roldan-Santiago Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad, Colonia, C.U. C.P. 04510 Ciudad de México, México
  • G. Ballesteros-Rodea Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí 78321, México
  • Raym Pineda-Reyes Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí 78321, México
  • Héctor Orozco-Gregorio Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí 78321, México

DOI:

https://doi.org/10.6000/1927-520X.2020.09.13

Keywords:

Cold stress, thermal stress, microclimate, behavior, welfare.

Abstract

This review's objective is to provide information on the mechanisms that buffaloes express during the thermoregulation process. Generally, the water buffalo is associated with warm and tropical climates. In these systems, the combination of high temperature, relative humidity, and radiation cause different physiological and behavioral changes, particularly during the summer months. Wallowing behavior in water or mud promotes heat dissipation through physical mechanisms, such as conduction, convection, and radiation. Furthermore, the provision of natural or artificial shades contributes to thermoregulation and maintains homeostasis. In production systems in cold climates, the wallowing behavior is inhibited by the water temperature, so it is important to keep the animals protected in stables to avoid the cold winds and rapid drops in temperature, causing increased illness pneumonia and sometimes death. Finally, in cold conditions, the animals require an appropriate diet since the use of energy is distributed mainly for the production of heat. Thus, heat stress and cold stress generates relevant problems in health, welfare, and productivity in water buffaloes. A comprehensive assessment of the severity of the resulting problems associated with thermal stress and specialty in cold stress in water buffaloes is necessary so far, and there's very little information about it in this species.

References

de la Cruz-Cruz LA, Napolitano F, Berdugo-Gutiérrez JA, Tarazona-Morales AM, Toledo L. Comportamiento y bienestar del búfalo de agua. In: Mota RD, Velarde AC, Huertas-Canén S, Cajiao MN, editors. Bienestar animal una visión global en Iberoamérica. 3rd ed. España: Elsevier 2016; pp. 63-76.

Abid H, Fazaa N, Al-Obaidi S, Al-Fartosi K, Radhi Z, Resan H, et al. Water buffalo in the Iraqi marshes. In Nature Iraq Status Report 2007. Sulaimani, Kurdistan, Iraq. (Accessed in 1 June 2020). http://www.natureiraq.org/uploads/9/2/7/0/ 9270858/status_report_buffalothiqar.pdf

Upadhyay RC, Singh SV, Ashutosh. Impact of climate change on livestock. Indian Dairyman 2008; 60: 98-102.

De Rosa G, Grasso F, Pacelli C, Napolitano F, Winckler C. The welfare of dairy buffalo. Ital J Anim Sci 2009; 8: 103-16. https://doi.org/10.4081/ijas.2009.s1.103 DOI: https://doi.org/10.4081/ijas.2009.s1.103

Marai I, Habeeb A. Buffaloes reproductive and productive traits as affected by heat stress. Trop Subtrop Agro 2010; 12: 193-217.

Barros DV, Ximenes Silva LK, Lourenco J de B, Almeida da Silva AO, Maciel e Silva AG, Franco IM, et al. Evaluation of thermal comfort, physiological, hematological, and seminal features of buffalo bulls in an artificial insemination station in a tropical environment. Trop Anim Health Prod 2015; 47: 805-13. https://doi.org/10.1007/s11250-015-0792-9 DOI: https://doi.org/10.1007/s11250-015-0792-9

Dash S, Chakravarty AK, Sah V, Jamuna V, Behera R, Kashyap N, et al. Influence of Temperature and Humidity on Pregnancy Rate of Murrah Buffaloes under Subtropical Climate. Asian-Australas J Anim Sci 2015; 28: 943-50. https://doi.org/10.5713/ajas.14.0825 DOI: https://doi.org/10.5713/ajas.14.0825

Vale WG. Effects of environment on buffalo reproduction. Ital J Anim Sci 2007; 6: 130-42. https://doi.org/10.4081/ijas.2007.s2.130 DOI: https://doi.org/10.4081/ijas.2007.s2.130

Zava M. Anatomía y Fisiología. In: Zava M, editor. El búfalo doméstico. 1st ed. Argentina: Orientación Gráfica Editora 2011; pp. 39-60.

Marai IFM, Haeeb AAM. Buffalo’s biological functions as affected by heat stress - A review. Livest Sci 2010; 127: 89-109. https://doi.org/10.1016/j.livsci.2009.08.001 DOI: https://doi.org/10.1016/j.livsci.2009.08.001

Lenis-Sanin Y, Zuluaga-Cabrera AM, Tarazona-Morales AM. Adaptive responses to thermal stress in mammals. Rev Med Vet 2016; 31: 121-35. https://doi.org/10.19052/mv.3715 DOI: https://doi.org/10.19052/mv.3715

Ratnakaran A, Sejian V, Sanjo J, Shalini V, Bagath M, Krishnan G, et al. Behavioral responses to livestock adaptation to heat stress challenges. Asian J Anim Sci 2017; 11: 1-13. https://doi.org/10.3923/ajas.2017.1.13 DOI: https://doi.org/10.3923/ajas.2017.1.13

Manteca X. Conducta de termorregulación y de alimentación. In: Manteca X, editor. Etología Veterinaria. 1st ed. España: Multimédica Ediciones Veterinarias 2009; pp. 75-110.

Klein GB. Termorregulación. In: Klein GB, editor. Cunningham. Fisiología Veterinaria. 5th ed. España: Elsevier 2014; pp. 559-68.

Habeeb A, Gad A, El-Tarabany A, Atta M. Negative effects of heat stress on growth and milk production of farm animals. J Anim Hus Dairy Sci 2018; 2: 1-12. DOI: https://doi.org/10.22259/2637-5354.0201001

Hill DH. Cattle and buffalo meat production in the tropic (Intermediate tropical agriculture series). 1st ed. London: Longman Science and Technology 1988.

Crudeli G. Fisiología reproductiva del búfalo. Tec March 2011; 24: 74-81.

Scanes C. Fundamentals of animal science. 1st ed. USA: Delmar Cengage Learning 2011.

Phillips CJC. Principles of Cattle Production (Animal & Veterinary Science). 2nd ed. UK: CABI Publishing 2009.

Bhat S, Kumar P, Kashyap N, Deshmukh B, Dige MS, Bhushan B, et al. Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Vet World 2016; 9: 113-7. https://doi.org/10.14202/vetworld.2016.113-117 DOI: https://doi.org/10.14202/vetworld.2016.113-117

Aggarwal A, Singh M. Hormonal changes in heat-stressed Murrah buffaloes under two different cooling systems. Buffalo Bull 2010; 29: 1-6.

Koga A, Chikamune T, Kanai Y, Homma H, Tajima A, Ishikawa N, et al. Effects of high environmental temperatures on some physicochemical parameters of blood and heat production in swamp buffaloes and holstein cattle. Anim Sci Technol 1991; 62: 1022-8. https://doi.org/10.2508/chikusan.62.1022 DOI: https://doi.org/10.2508/chikusan.62.1022

Koga A, Kurata K, Ohata K, Nakajima M, Hirose H, Furukawa R, et al. Internal changes of blood compartment and heat distribution in swamp buffaloes under hot conditions: Comparative study of thermo-regulation in buffaloes and friesian cows. Asian-Australas J Anim Sci 1999; 12: 886-90. https://doi.org/10.5713/ajas.1999.886 DOI: https://doi.org/10.5713/ajas.1999.886

Schütz KE, Clark KV, Cox NR, Matthews LR, Tucker CB. Responses to short-term exposure to simulated rain and wind by dairy cattle: time budgets, shelter use, body temperature and feed intake. Animal Welf 2010; 19: 375-83. DOI: https://doi.org/10.1017/S0962728600001858

Das KS, Singh JK, Singh G, Upadhyay RC, Malik R, Oberoi PS. Heat stress alleviation in lactating buffaloes: Effect on physiological response, metabolic hormone, milk production and composition. Indian J Anim Sci 2014; 84: 275-80. DOI: https://doi.org/10.56093/ijans.v84i3.38707

Caballero-Chacón S. Sentido del tacto. In: Caballero-Chacón S, Villa-Godoy A, editors. Fisiología Veterinaria e Introducción a la Fisiología de los Procesos Productivos. 1st ed. México: Universidad Nacional Autónoma de México 2010; pp.113-18.

Schepers RJ, Ringkamp M. Thermoreceptors and thermosensitive afferents. Neurosci Biobehav R 2010; 34: 177-84. https://doi.org/10.1016/j.neubiorev.2009.10.003 DOI: https://doi.org/10.1016/j.neubiorev.2009.10.003

Dhaka A, Viswanath V, Patapoutian A. TRP ion channels and temperature sensation. Annu Rev Neurosci 2006; 29: 135-61. https://doi.org/10.1146/annurev.neuro.29.051605.112958 DOI: https://doi.org/10.1146/annurev.neuro.29.051605.112958

Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nat 2007; 445: 858-65. https://doi.org/10.1038/nature05662 DOI: https://doi.org/10.1038/nature05662

Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF, et al. The Transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 2009; 61: 228-61. https://doi.org/10.1124/pr.109.001263 DOI: https://doi.org/10.1124/pr.109.001263

Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 2014; 19: 741-56. https://doi.org/10.1016/j.cmet.2014.02.007 DOI: https://doi.org/10.1016/j.cmet.2014.02.007

Napolitano F, Pacelli C, Grasso F, Braghieri A, De Rosa G. The behaviour and welfare of buffaloes (Bubalus bubalis) in modern dairy enterprises. Animal 2013; 7: 1704-13. https://doi.org/10.1017/S1751731113001109 DOI: https://doi.org/10.1017/S1751731113001109

Verma DN, Lal SN, Singh SP, Om Prakash. Effect of season on biological responses and productivity of buffaloes. Int J Anim Sci 2000; 15: 237-44.

Silanikove N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 2000; 67: 1-18. https://doi.org/10.1016/S0301-6226(00)00162-7 DOI: https://doi.org/10.1016/S0301-6226(00)00162-7

Aggarwal A, Upadhyay R. Thermorregulation. In: Aggarwal A, Upadhyay R, editors. Heat stress and animal productivity. 1 st ed. India: Springer Publishing 2013; p. 6. https://doi.org/10.1007/978-81-322-0879-2 DOI: https://doi.org/10.1007/978-81-322-0879-2

Singh A, Rajni D, Kumar Y, Parveen K, Upadhyay R. Physiological changes and blood flow in murrah buffaloes during summer and winter season. J Buffalo Sci 2014; 3: 1-7. https://doi.org/10.6000/1927-520X.2014.03.02.6 DOI: https://doi.org/10.6000/1927-520X.2014.03.02.6

Upadhyay R, Chaiyabutr N. Thermal balance in the buffalo species. The buffalo (bubalus bubalis) - Production and Research. 1st ed. Italy: Bentham Science Publishers 2017; pp. 105-44. https://doi.org/10.2174/9781681084176117010008 DOI: https://doi.org/10.2174/9781681084176117010008

Savsani H, Padodara R, Bhadaniya A, Kalariya V, Javia B, Ghodasara S, et al. impact of climate on feeding, production, and reproduction of animals-A Review. Agric Rev 2015; 36: 26-36. https://doi.org/10.5958/0976-0741.2015.00003.3 DOI: https://doi.org/10.5958/0976-0741.2015.00003.3

Habeeb A, Fatma F, Osman S. Detection of heat adaptability using heat shock proteins and some hormones in Egyptian buffalo calves. Egyptian J Appl Sci 2007; 22: 28-53.

Zava MA. El búfalo doméstico. 1st ed. Argentina: OGE-INTA; 2011.

Kumar S, Kumar P, Harikrishna C, Rani M. Effect of stress on production and reproduction performance of buffaloes- A review. Pharma Innov J 2018; 7: 629-33.

Sharma A, Kundu SS, Tariq H, Mahesh MS, Gautam S, Singh S. Predicting water intake of lactating riverine buf-faloes under tropical climate. Livest Sci 2016; 191: 187-90. https://doi.org/10.1016/j.livsci.2016.08.009 DOI: https://doi.org/10.1016/j.livsci.2016.08.009

Abayawansa WD, Prabhakar S, Singh AK, Brar PS. Effect of climatic changes on reproductive performance of Murrah buffaloes in Punjab: A rertrospective analysis. Indian J Anim Sci 2011; 81: 334-9.

Dash S, Chakravarty AK, Singh A, Behera R, Upadhyay A, Shivahre PR. Determination of critical heat stress zone for fertility traits using temperature humidity index in Murrah buffaloes. Indian J Anim Sci 2014; 84: 1181-4. DOI: https://doi.org/10.56093/ijans.v84i11.44722

Reddy AO, Ramesha KP, Rao MK. Effect of climate on the incidence of oestrus, conception and cycle length in Murrah buffaloes. Indian J Anim Sci 1999; 69: 485-9.

Garcia A. Influência de fatores ambientais sobre as características reprodutivas de búfalos do rio (Bubalus bubalis). Rev Cienc Agr 2006; 45: 1-13.

Andrabi SMH. Factors Affecting the Quality of Cryopreserved Buffalo (Bubalus bubalis) Bull Spermatozoa. Reprod Domest Anim 2009; 44: 552-69. https://doi.org/10.1111/j.1439-0531.2008.01240.x DOI: https://doi.org/10.1111/j.1439-0531.2008.01240.x

Napolitano F, Grasso F, Saltalamacchia F, Martiniello P, Bilancione A, Pacelli C, et al. Grazing behaviour of buffalo heifers. Ital J Animal Sci 2007; 6: 1256-9. https://doi.org/10.4081/ijas.2007.s2.1256 DOI: https://doi.org/10.4081/ijas.2007.s2.1256

Bracke MBM. Review of wallowing in pigs: Description of the behaviour and its motivational basis. Appl Anim Behav Sci 2011; 132: 1-13. https://doi.org/10.1016/j.applanim.2011.01.002 DOI: https://doi.org/10.1016/j.applanim.2011.01.002

Al-Jubury A, Jarullah B, Al-Jassim K, Badran M, Mahmmod Y. Prevalence and diffusion of gastrointestinal parasite infec-tions in swamp water buffalo (Bubalus Bubalis) populations from marshlands of Iraq. J Buffalo Sci 2020; 9: 38-47. DOI: https://doi.org/10.6000/1927-520X.2019.08.03.6

Fazaa NA, Dunn JC, Whittingham MJ. Evaluation of the ecosystem services of the central marsh in Southern Iraq. Baghdad Sci J 2018; 15: 369-80. https://doi.org/10.21123/bsj.15.4.369-380 DOI: https://doi.org/10.21123/bsj.15.4.369-380

Somparn P, Gibb M, Vajrabukka C. Wallowing behaviour of swamp buffalo (Bubalus bubalis) heifers under continuous stocking during the summer in Northeastern Thailand. Buffalo J 2006; 1: 11-24.

Khongdee T, Sripoon S, Vajrabukka C. The effects of high temperature and roof modification on physiological responses of swamp buffalo (Bubalus bubalis) in the tropics. Int J Biometeorol 2013; 57: 349-54. https://doi.org/10.1007/s00484-012-0557-3 DOI: https://doi.org/10.1007/s00484-012-0557-3

De Rosa G, Grasso F, Braghieri A, Bilancione A, Di Francia A, Napolitano F. Behavior and milk production of buffalo cows as affected by housing system. J Dairy Sci 2009; 92: 907-12. https://doi.org/10.3168/jds.2008-1157 DOI: https://doi.org/10.3168/jds.2008-1157

Castro AC, Lourenco-Junior JB, dos Santos NFA, Monteiro EMM, de Aviz MAB, Garcia AR. Sistema silvipastoril na Amazônia: ferramenta para elevar o desempenho produtivo de búfalos. Cien Rural 2008; 38: 2395-402. https://doi.org/10.1590/S0103-84782008000800050 DOI: https://doi.org/10.1590/S0103-84782008000800050

Joele MRSP, Lourenco LFH, Lourenco Junior JB, Araujo GS, Budel JCC, Garcia AR. Meat quality of buffaloes finished in traditional or silvopastoral system in the Brazilian Eastern Amazon. J Sci Food Agric 2017; 97: 1740-5. https://doi.org/10.1002/jsfa.7922 DOI: https://doi.org/10.1002/jsfa.7922

da Silva JAR, de Araújo AA, Lourenço-Júnior JB, dos Santos NFA, Garcia AR, de Souza NB. Conforto térmico de búfalas em sistema silvipastoril na Amazônia Oriental. Pesq Agropec Bras 2011; 46: 1364-71. https://doi.org/10.1590/S0100-204X2011001000033 DOI: https://doi.org/10.1590/S0100-204X2011001000033

Esperschuetz J, Balaine N, Clough T, Bulman S, Dickinson NM, Horswell J, et al. The potential of L. scoparium, K. robusta and P. radiata to mitigate N-losses in silvopastural systems. Environ Pollut 2017; 225: 12-9. https://doi.org/10.1016/j.envpol.2017.03.042 DOI: https://doi.org/10.1016/j.envpol.2017.03.042

Murgueitio E, Barahona R, Chará J, Flores M, Mauricio R, Molina J. The intensive silvopastoral systems in Latin America sustainable alternative to face climatic change in animal husbandry. Cuba Cienc Agríc 2015; 49: 541-54.

Moraes-Júnior RJ, Garcia RA, dos Santos NFA, Nahúm BS, Lourenco-Junior B, de Aaraújo CV, et al. Conforto ambiental de bezerros bubalinos (Bubalus bubalis Linnaeus, 1758) em sistemas silvipastoris na Amazônia Oriental. Acta Amazon 2010; 40: 629-40. https://doi.org/10.1590/S0044-59672010000400001 DOI: https://doi.org/10.1590/S0044-59672010000400001

Garcia AR, Matos LB, Lourenco-Júnior JB, Nahúm BS, de Araújo CV, Santos AX. Variáveis fisiológicas de búfalas leiteiras criadas sob sombreamento em sistemas silvipastoris. Pesq Agropec Bras 2011; 46:1409-14. https://doi.org/10.1590/S0100-204X2011001000039 DOI: https://doi.org/10.1590/S0100-204X2011001000039

Tarazona-Morales AM, Ceballos MC, Correa-Londoño G, Cuartas-Cardona CA, Naranjo Ramírez JF, Paranhos da Costa MJR. Welfare of cattle kept in intensive silvopastoral systems: A case report. Rev Bras Zootec 2017; 46: 478-88. https://doi.org/10.1590/s1806-92902017000600002 DOI: https://doi.org/10.1590/s1806-92902017000600002

Ahmad S, Tariq M. Heat stress management in water buffaloes: a review. In: Romero F, editor. Proceedings of the 9th World Buffalo Congress; 2010: Buenos Aires, Argentina: Facultad de Ciencias Veterinarias de la Universidad Nacional del Nordeste (UNNE) 2010; pp. 297-310.

Khounsy S, Nampanya S, Inthavong P, Yang M, Khamboungheung B, Avery M, et al. Significant mortality of large ruminants due to hypothermia in northern and central Lao PDR. Trop Anim Health Prod 2012; 44: 835-42. https://doi.org/10.1007/s11250-011-9975-1 DOI: https://doi.org/10.1007/s11250-011-9975-1

Torell R, Kvasnicka B, Bruce B. Care of hypothermic (cold stressed) newborn beef cows. Available online: thecattlesite [serial on the internet]. 2008 Feb 29; [cited 2020 march 15]. Available from: https://www.unce.unr.edu/publications/files/ ag/other/cl788.pdf

Collier RJ, Beede DK, Thatcher WW, Israel LA, Wilcox CJ. Influences of environment and its modification on dairy animal health and production. J Dairy Sci 1982; 65: 2213-27. https://doi.org/10.3168/jds.S0022-0302(82)82484-3 DOI: https://doi.org/10.3168/jds.S0022-0302(82)82484-3

Webster JR, Stewart M, Rogers AR, Verkerk GA. Assessment of welfare from physiological and behavioural responses of New Zealand dairy cows exposed to cold and wet conditions. Animal Welf 2008; 17: 19-26. DOI: https://doi.org/10.1017/S0962728600031948

Gonyou H, Christopherson R, Young B. Effects of cold temperature and winter conditions on some aspects of behavior of feedlot cattle. Appl Anim Ethol 1979; 5: 113-24. https://doi.org/10.1016/0304-3762(79)90083-X DOI: https://doi.org/10.1016/0304-3762(79)90083-X

Redbo I, Ehrlemark A, Redbo-Torstensson P. Behavioural responses to climatic demands of dairy heifers housed outdoors. Can J Anim Sci 2001; 81: 9-15. https://doi.org/10.4141/A00-071 DOI: https://doi.org/10.4141/A00-071

O’Driscoll K, Boyle L, Hanlon A. The effect of breed and housing system on dairy cow feeding and lying behaviour. Appl Anim Behav Sci 2009; 116: 156-62. https://doi.org/10.1016/j.applanim.2008.08.003 DOI: https://doi.org/10.1016/j.applanim.2008.08.003

Yung B. Ruminat cold stress: effect on production. J Anim Sci 1983; 57: 1601-7. https://doi.org/10.2527/jas1983.5761601x DOI: https://doi.org/10.2527/jas1983.5761601x

Downloads

Published

2020-07-13

How to Cite

Yáñez-Pizaña, A. . . ., Cruz-Cruz, uis . . A. . . de . . la . . ., Tarazona-Morales, A., Roldan-Santiago, P., Ballesteros-Rodea, G., Pineda-Reyes, R., & Orozco-Gregorio, H. (2020). Physiological and Behavioral Changes of Water Buffalo in Hot and Cold Systems: Review. Journal of Buffalo Science, 9, 110–120. https://doi.org/10.6000/1927-520X.2020.09.13

Issue

Section

Articles

Most read articles by the same author(s)