Searching for Stability as we Age: The PCA-Biplot Approach

Authors

  • Renata Noce Kirkwood Graduate Program in Rehabilitation Science, Universidade Federal de Minas Gerais, 6627 Antônio Carlos Avenue, Belo Horizonte, Minas Gerais, 31270-901, Brazil
  • Scott C.E. Brandon Department of Mechanical and Materials Engineering, Queen’s University, McLaughlin Hall, 130 Stuart Street, Kingston, Ontario, K7L 3N6, Canada
  • Bruno de Souza Moreira Graduate Program in Rehabilitation Science, Universidade Federal de Minas Gerais, 6627 Antônio Carlos Avenue, Belo Horizonte, Minas Gerais, 31270-901, Brazil
  • Kevin J. Deluzio Human Mobility Research Centre, Syl & Molly Apps Medical Research Centre, Kingston, General Hospital & Queen's University, Kingston, Ontario, K7L 2V7, Canada

DOI:

https://doi.org/10.6000/1929-6029.2013.02.04.2

Keywords:

Gait, Principal Components Analysis, Biplot, Elderly, Balance, Step Length

Abstract

Principal component analysis (PCA) has been successfully applied to gait data; however, interpretation of the components is challenging. An alternative is to use a graphical display called biplot that gives insights into relationships and trends of data sets. Our goal was to demonstrate the sensitivity of gait variables to aging in elderly women with PCA-biplot. One hundred fifty-one elderly females (71.6±5.0 yrs), 152 adults (44.7±5.4 yrs) and 150 young (21.7±4.1 yrs) participated in the study. Gait spatial and temporal parameters were collected using a computerized carpet. PCA-biplot, discriminant analysis and MANOVA were used in the analysis. PCA-biplot revealed that elderly females walked with lower velocity, shorter step length, reduced swing time, higher cadence, and increased double support time compared to the other two groups. The greatest distances between the groups were along the variable step length with the elderly group showing a decrease of 8.4 cm in relation to the younger group. The discriminant function confirmed the importance of principal component 2 for group separation. Because principal component 2 was heavily weighted by step length and swing time, it represents a measure of stability. As women age they seek a more stable gait by decreasing step length, swing time, and velocity. PCA-biplot highlighted the importance of the variable step length in distinguishing between women of different age groups. It is well-known that as we age we seek a more stable gait. The PCA-biplot emphasized that premise and gave further important insights into relationships and trends of this complex data set.

Author Biographies

Renata Noce Kirkwood, Graduate Program in Rehabilitation Science, Universidade Federal de Minas Gerais, 6627 Antônio Carlos Avenue, Belo Horizonte, Minas Gerais, 31270-901, Brazil

Department of Mechanical and Materials Engineering

Scott C.E. Brandon, Department of Mechanical and Materials Engineering, Queen’s University, McLaughlin Hall, 130 Stuart Street, Kingston, Ontario, K7L 3N6, Canada

Department of Mechanical and Materials Engineering

Bruno de Souza Moreira, Graduate Program in Rehabilitation Science, Universidade Federal de Minas Gerais, 6627 Antônio Carlos Avenue, Belo Horizonte, Minas Gerais, 31270-901, Brazil

Graduate Program in Rehabilitation Science

Kevin J. Deluzio, Human Mobility Research Centre, Syl & Molly Apps Medical Research Centre, Kingston, General Hospital & Queen's University, Kingston, Ontario, K7L 2V7, Canada

Human Mobility Research Centre, Syl & Molly Apps Medical Research Centre, Kingston

References

Patla AE. Understanding the Control of Human Locomotion: A Prologue. In: Patla AE, Ed. Adaptability fo Human Gait. Implication for the Control of Locomotion. 1 ed. North-Holland: Elsevier Science Publishers B.V. 1991; pp. 3-17. DOI: https://doi.org/10.1016/S0166-4115(08)60735-9

Breniere Y, Bril B. Development of postural control of gravity forces in children during the first 5 years of walking. Exp Brain Res 1998; 121: 255-62. http://dx.doi.org/10.1007/s002210050458 DOI: https://doi.org/10.1007/s002210050458

Hausdorff JM, Zemany L, Peng C, Goldberger AL. Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol 1999; 86: 1040-7. DOI: https://doi.org/10.1152/jappl.1999.86.3.1040

Sutherland DH. The development of mature gait. Gait Posture 1997; 6: 163-70. http://dx.doi.org/10.1016/S0966-6362(97)00029-5 DOI: https://doi.org/10.1016/S0966-6362(97)00029-5

Bohannon RW, Williams AA. Normal walking speed: a descriptive meta-analysis. Physiotherapy 2011; 97: 182-9. http://dx.doi.org/10.1016/j.physio.2010.12.004 DOI: https://doi.org/10.1016/j.physio.2010.12.004

Callisaya ML, Blizzard L, Schmidt MD, Martin KL, McGinley JL, Sanders LM, et al. Gait variability and the risk of multiple incident falls in older people: a population-based study. Age Ageing 2011; 40: 481-7. http://dx.doi.org/10.1093/ageing/afr055 DOI: https://doi.org/10.1093/ageing/afr055

Oberg T, Karsznia A, Oberg K. Joint angle parameters in gait: Reference data for normal subjects, 10-79 years of age. J Rehab Res Develop 1994; 31: 199-13.

Srikanth V, Sanders L, Callisaya M, Martin K, Phan T. Brain aging and gait. Aging Health 2010; 6: 123-31. http://dx.doi.org/10.2217/ahe.09.79 DOI: https://doi.org/10.2217/ahe.09.79

Benedetti MG, Catani F, Leardini A, Pignotti E, Giannini S. Data management in gait analysis for clinical applications. Clin Biomech 1998; 13: 204-15. http://dx.doi.org/10.1016/S0268-0033(97)00041-7 DOI: https://doi.org/10.1016/S0268-0033(97)00041-7

Chau T. A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods. Gait Posture 2001; 13: 49-66. http://dx.doi.org/10.1016/S0966-6362(00)00094-1 DOI: https://doi.org/10.1016/S0966-6362(00)00094-1

Grabiner PC, Biswas T, Grabiner MD. Age-related changes in spatial and temporal gait variables. Arch Phys Med Rehabil 2001; 82: 31-5. http://dx.doi.org/10.1053/apmr.2001.18219 DOI: https://doi.org/10.1053/apmr.2001.18219

Maki BE. Gait changes in older adults: predictors of falls or indicators of fear? J Am Geriatr Soc 1997; 45: 313-20. DOI: https://doi.org/10.1111/j.1532-5415.1997.tb00946.x

Olney S, Griffin MP, McBride ID. Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Phys Ther 1994; 74: 872-85. DOI: https://doi.org/10.1093/ptj/74.9.872

Simon SR. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech 2004; 37: 1869-80. http://dx.doi.org/10.1016/j.jbiomech.2004.02.047 DOI: https://doi.org/10.1016/j.jbiomech.2004.02.047

Astephen JL, Deluzio KJ. Techniques in modern gait analysis and their appliction to the study of knee Osteoarthritis. In: Leondes CT, Ed. Biomechnaic Systems Technology: Muscuar Skeletal Systems. 1st ed. Los Angeles: World Scientific 2010; pp. 39-72. DOI: https://doi.org/10.1142/9789812771384_0002

Jolliffe IT. Principal Component Analysis. 2nd ed. New York: Springer 2004. DOI: https://doi.org/10.1002/0470013192.bsa501

Gabriel KR. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971; 58: 453-67. http://dx.doi.org/10.1093/biomet/58.3.453 DOI: https://doi.org/10.1093/biomet/58.3.453

Gabriel KR. Biplot display of multivariate matrices for inspection of data and diagnosis. In: Barnett V, Ed. Interpreting Multivariate Data. 1st ed. Toronto: John Wiley & Sons 1980; pp. 147-73.

Gabriel KR, Odoroff CL. Biplots in biomedical research. Stat Med 1990; 9: 469-85. http://dx.doi.org/10.1002/sim.4780090502 DOI: https://doi.org/10.1002/sim.4780090502

Gower J, Lubbe S, le Roux NJ. Understanding Biplots. 1st ed. London: John Wiley & Sons, Ltda 2010. DOI: https://doi.org/10.1002/9780470973196

le Roux NJ, Gardner S, Aldrich C. Biplot analysis of process systems. SAIEE 2005; 253-8.

Shy-Modjeska JS, Riviere JE, Rawlings JO. Application of biplot methods to the multivariate analysis of toxicological and pharmacokinetic data. Toxicol Appl Pharmacol 1984; 72: 91-101. http://dx.doi.org/10.1016/0041-008X(84)90252-7 DOI: https://doi.org/10.1016/0041-008X(84)90252-7

De WL, Molas M, Dejaeger E, De WW, Feys H, Jenni W,

et al. The use of a biplot in studying outcomes after stroke. Neurorehabil Neural Repair 2009; 23: 825-30. http://dx.doi.org/10.1177/1545968309337137 DOI: https://doi.org/10.1177/1545968309337137

Nieuwboer A, De WW, Dom R, Lesaffre E. A frequency and correlation analysis of motor deficits in Parkinson patients. Disabil Rehabil 1998; 20: 142-50. http://dx.doi.org/10.3109/09638289809166074 DOI: https://doi.org/10.3109/09638289809166074

Deluzio KJ, Wyss UP, Zee B, Costigan P, Sorbie C. Principal component models of knee kinematics and kinetics: Normal vs. pathological gait patterns. Hum Mov Sci 1997; 16: 201-17. http://dx.doi.org/10.1016/S0167-9457(96)00051-6 DOI: https://doi.org/10.1016/S0167-9457(96)00051-6

Astephen JL, Deluzio KJ. Changes in frontal plane dynamics and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis technique. Clin Biomech 2005; 20: 209-17. http://dx.doi.org/10.1016/j.clinbiomech.2004.09.007 DOI: https://doi.org/10.1016/j.clinbiomech.2004.09.007

Manly BJF. Multivariate statistical methods. A primer. 3 ed. New York: Chapman & Hall/CRC 2004. DOI: https://doi.org/10.1201/b16974

Gabriel KR. Analysis of meteorological data by means of canonical decomposition and biplots. J Appl Meteor 1972; 11: 1071-7. http://dx.doi.org/10.1175/1520-0450(1972)011<1071:AOMDBM>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0450(1972)011<1071:AOMDBM>2.0.CO;2

Kohler U, Luniak M. Data inspection using biplots. Stata J 2005; 5: 208-23. DOI: https://doi.org/10.1177/1536867X0500500206

Rawlings JO, Pantula SG, Dickey DA. Collinearity. In: Casella G, Fienberg S, Olkin I, Eds. Applied Regression Analysis. A Research Tool. 2nd ed. New York: Springer-Verlag 1998; pp. 433-62. DOI: https://doi.org/10.1007/b98890

Meyers LS, Gamst G, Guarino AJ. Applied Multivariate Research. Design and Interpretation. 1st ed. London: Sage Publications, INc. 2006.

Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 1990; 70: 340-7. DOI: https://doi.org/10.1093/ptj/70.6.340

Sturnieks DL, St GR, Lord SR. Balance disorders in the elderly. Neurophysiol Clin 2008; 38: 467-78. http://dx.doi.org/10.1016/j.neucli.2008.09.001 DOI: https://doi.org/10.1016/j.neucli.2008.09.001

Hak L, Houdijk H, Steenbrink F, Mert A, van der Wurff P, Beek PJ, et al. Speeding up or slowing down? Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture 2012; 36: 260-4. http://dx.doi.org/10.1016/j.gaitpost.2012.03.005 DOI: https://doi.org/10.1016/j.gaitpost.2012.03.005

Latt MD, Menz HB, Fung VS, Lord SR. Walking speed, cadence and step length are selected to optimize the stability of head and pelvis accelerations. Exp Brain Res 2008; 184: 201-9. http://dx.doi.org/10.1007/s00221-007-1094-x DOI: https://doi.org/10.1007/s00221-007-1094-x

Kirkwood RN, de Souza MB, Vallone ML, Mingoti SA, Dias RC, Sampaio RF. Step length appears to be a strong discriminant gait parameter for elderly females highly concerned about falls: a cross-sectional observational study. Physiotherapy 2011; 97: 126-31. http://dx.doi.org/10.1016/j.physio.2010.08.007 DOI: https://doi.org/10.1016/j.physio.2010.08.007

Krebs DE, Goldvasser D, Lockert JD, Portney LG, Gill-Body KM. Is base of support greater in unsteady gait? Phys Ther 2002; 82: 138-47. DOI: https://doi.org/10.1093/ptj/82.2.138

Astephen JL, Deluzio KJ. A multivariate gait data analysis technique: application to knee osteoarthritis. Proc Inst Mech Eng H 2004; 218: 271-9. http://dx.doi.org/10.1243/0954411041560983 DOI: https://doi.org/10.1243/0954411041560983

Downloads

Published

2013-10-31

How to Cite

Kirkwood, R. N., Brandon, S. C., Moreira, B. de S., & Deluzio, K. J. (2013). Searching for Stability as we Age: The PCA-Biplot Approach. International Journal of Statistics in Medical Research, 2(4), 255–262. https://doi.org/10.6000/1929-6029.2013.02.04.2

Issue

Section

General Articles