Alumina Surface Treated Pigmentary Titanium Dioxide with Suppressed Photoactivity

Authors

  • N. Veronovski Cinkarna-Metallurgical and Chemical Industry Celje, Inc., Kidričeva 26, 3001 Celje, Slovenia
  • M. Lesnik Cinkarna-Metallurgical and Chemical Industry Celje, Inc., Kidričeva 26, 3001 Celje, Slovenia
  • D. Verhovsek Cinkarna-Metallurgical and Chemical Industry Celje, Inc., Kidričeva 26, 3001 Celje, Slovenia

DOI:

https://doi.org/10.6000/2369-3355.2014.01.01.6

Keywords:

Titanium dioxide, Surface treatment, Coatings, Alumina, Photo activity

Abstract

The aim of the optimization of the technological process was to coat the surface of the pigment in a controlled manner and to supress photoactivity in the titanium dioxide (TiO2) pigment. As part of this research, a systematic approach to TiO2 pigment surface treatment with alumina was conducted. Surface treatment with alumina plays a significant role in the improvement of TiO2 properties (e.g. weather resistance and photostability). This research encompasses a raw material analysis and process conditions study. Sodium aluminate and aluminium sulphate were used as a source of alumina hydroxide. The effectiveness of surface treatment was determined using scanning-transmission (STEM) and transmission (TEM) electron microscopy. The photoactivity of pigmentary TiO2 was determined before and after surface treatment. A controlled surface treatment process resulted in pigmentary TiO2 particles with uniform amorphous layers, which supressed the photoactivity of the pigment.

References

Tyler F. Tailoring TiO2 Treatment Chemistry To Achieve Desired Performance Properties. Paint & Layers Ind 2000; 32:16-32.

Winkler J. Titanium Dioxide. Hanover: Vincentz 2003.

Liu Y, Ge C, Ren M, Yin H, Wang A, Zhang D, Liu C, Chen J, Feng H, Yao H, Jiang T. Effects of layer parameters on the morphology of SiO2-coated TiO2 and the pigmentary properties. App Surf Sci 2008; 254:2809-2819. http://dx.doi.org/10.1016/j.apsusc.2007.10.021

Liu Y, Zhang Y, Ge C, Yin H, Wang A, Ren M, Feng H, Chen J, Jiang T, Yu L. Evolution mechanism of alumina layer layer on rutile TiO2 powders and the pigmentary properties. Appl Surf Sci 2009; 255:7427-7433. http://dx.doi.org/10.1016/j.apsusc.2009.04.013

Zhang Y, Liu Y, Ge C, Yin H, Ren M, Wang A, Jiang T, Yu L. Evolution mechanism of alumina nanofilms on rutile TiO2 starting from sodium metaaluminate and the pigmentary properties. Powder Technol 2009; 192:171-177. http://dx.doi.org/10.1016/j.powtec.2008.12.009

Zhang Y, Yin H, Wang A, Ren M, Gu Z, Liu Y, Shen Y, Yu L, Jiang T. Deposition and characterization of binary Al2O3/SiO2 coating layers on the surfaces of rutile TiO2 and the pigmentary properties. App Surf Sci 2010; 257:1351-1360. http://dx.doi.org/10.1016/j.apsusc.2010.08.071

Zhang Y, Yin H, Wang A, Liu C, Yu L, Jiang T, Hang Y. Evolution of zirconia coating layer on rutile TiO2 surface and the pigmentary property. J Phys Chem Solids 2010; 71:1458-1466. http://dx.doi.org/10.1016/j.jpcs.2010.07.013

Lin YL, Wang TJ, Jin Y. Surface characteristics of hydrous silica coated TiO2 particles. Powder Technol 2002; 123: 194-198. http://dx.doi.org/10.1016/S0032-5910(01)00470-3

Edward CM. Titanium dioxide pigment and process making same. US patent 4,022, 636, 1977.

Thomas FS, Woburn M. Nongelling Titania pigments. US patent 3,523,810, 1966.

Wu HX, Wang TJ, Jin Y. Morphology Phase Diagram of the Hydrous Alumina Layer on TiO2 Particles during Aqueous Precipitation. Ind Eng Chem Res 2006; 45:5274-5278. http://dx.doi.org/10.1021/ie0601910

Wang C, Han Z, Wang P, Cui N, Lao T, Hong P. Potentiometric titration curves of aluminium salt solutions and its species conversion in the hydrolysis-polymerization course. Bull Chem Soc Ethiop 2008; 22:155-164. http://dx.doi.org/10.4314/bcse.v22i2.61276

Liu Y, Zhang Y, Ge C, Yin H, Wang A, Ren M, Feng H, Chen J, Jiang T, Yu L. Evolution mechanism of alumina layer on rutile TiO2 powders and the pigmentary properties. App Surf Sci 2009; 255:7427-7433. http://dx.doi.org/10.1016/j.apsusc.2009.04.013

Brock T, Groteklaes M, Mischke P. European Layers Handbook, 2nd revised ed. Hannover: Vincentz Network; 2010, p 127.

Franks GV, Gan Y. Charging Behavior at the Alumina–Water Interface and Implications for Ceramic Processing. J Am Ceram Soc 2007; 90:3373–3388. http://dx.doi.org/10.1111/j.1551-2916.2007.02013.x

Wu HX, Wang TJ, Jin Y. Film-Layer Process of Hydrated Alumina on TiO2 Particles. Ind Eng Chem Res 2006; 45:1337-1342. http://dx.doi.org/10.1021/ie0510167

Shen Z, Zhao ZG, Wang GT. Colloid and Surface Chemistry. Chemistry Industry Press, Beijing, China; 2004.

Nur H. Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater Sci Eng B 2006; 133:49–54. http://dx.doi.org/10.1016/j.mseb.2006.05.003

Morterra C, Bolis V, Magnacca G. IR Spectroscopic and Microcalorimetric Characterization of Lewis Acid Sites on (Transition Phase) Al2O3 Using Adsorbed CO. Langmuir 1994; 10:1812-1824. http://dx.doi.org/10.1021/la00018a033

Downloads

Published

2014-06-24

How to Cite

Veronovski, N., Lesnik, M., & Verhovsek, D. (2014). Alumina Surface Treated Pigmentary Titanium Dioxide with Suppressed Photoactivity. Journal of Coating Science and Technology, 1(1), 51–58. https://doi.org/10.6000/2369-3355.2014.01.01.6

Issue

Section

Articles