The Effects of Primary Oxy-Salts on Anodizing Magnesium Alloy AZ91D

Authors

  • Yeoheung Yun Dept of Bio-Engineering, North Carolina Agricultural & Technical State University, Greensboro, NC 27411, USA
  • Dingchuan Xue Dept of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
  • Brian H. Halsall Dept of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
  • William Vanooij Ecosil Technologies LLC, Fairfield
  • Mark J. Schulz Dept of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
  • Vesselin Shanov Dept of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

DOI:

https://doi.org/10.6000/2369-3355.2014.01.01.9

Keywords:

Anodization, corrosion inhibitor, AZ91D, primary oxy-salt

Abstract

Anodization is known to be an effective way to slow down the initial corrosion rate of magnesium (Mg) and its alloys. Here, we investigated the specific use of oxy-salts to improve the corrosion resistance of anodizing coatings. Oxy-salts of silicate, phosphate, and carbonate were added separately to a sodium hydroxide alkaline electrolyte used to anodize Mg alloy AZ91D. The process was investigated in terms of anodizing behavior, the surface properties, and the corrosion behavior of AZ91D. Anodizing AZ91D using the silicate- containing electrolyte generated sparks, and produced a thicker and more corrosion-resistant layer than the other oxy-salts. In the process, MgO and SiO2 formed Mg2SiO4 at high temperatures. Coatings from the phosphate- and carbonate- containing electrolyte anodizations did not contain phosphorus or carbon. We also studied the effects of silicate concentration on the corrosion resistance and properties of the surface.

Author Biographies

Yeoheung Yun, Dept of Bio-Engineering, North Carolina Agricultural & Technical State University, Greensboro, NC 27411, USA

Dept of Bio-Engineering

Dingchuan Xue, Dept of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Dept of Chemical and Materials Engineering

Brian H. Halsall, Dept of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA

Dept of Chemistry

Mark J. Schulz, Dept of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Dept of Mechanical Engineering

Vesselin Shanov, Dept of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Dept of Chemical and Materials Engineering

References

Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006; 27(7): 1013-18. http://dx.doi.org/10.1016/j.biomaterials.2005.07.037

Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26(17): 3557-63. http://dx.doi.org/10.1016/j.biomaterials.2004.09.049

Zeng RC, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 2008; 10(8): B3-B14. http://dx.doi.org/10.1002/adem.200800035

Xue D, Yun Y, Schulz MJ, Shanov V. Corrosion protection of biodegradable magnesium implants using anodization. Mater Sci Eng C 2011; 31(2): 215-23. http://dx.doi.org/10.1016/j.msec.2010.08.019

Hiromoto S, Shishido T, Yamamoto A, Maruyama N, Somekawa H, Mukai T. Precipitation control of calcium phosphate on pure magnesium by anodization. Corrosion Sci 2008; 50(10): 2906-13. http://dx.doi.org/10.1016/j.corsci.2008.08.013

Khaselev O, Yahalom J. The anodic behavior of binary Mg-Al alloys in KOH-aluminate solutions. Corrosion Sci 1998; 40(7): 1149-60. http://dx.doi.org/10.1016/S0010-938X(98)00019-5

Mizutani Y, Kim SJ, Ichino R, Okido M. Anodizing of Mg alloys in alkaline solutions. Surface Coat Technol 2003; 169: 143-46. http://dx.doi.org/10.1016/S0257-8972(03)00214-7

Li LL, Cheng YL, Wang HM, Zhang Z. Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films. Trans Nonferrous Metals Soc China 2008; 18(3): 722-27. http://dx.doi.org/10.1016/S1003-6326(08)60124-7

Ono S, Miyake M, Asoh H. Effects of formation voltage and electrolyte ions concentration on the structure and passivity of anodic films on magnesium. J Jpn Instit Light Metals 2004; 54(11): 544-50. http://dx.doi.org/10.2464/jilm.54.544

Hsiao HY, Tsai WT. Characterization of anodic films formed on AZ91D magnesium alloy. Surf Coat Technol 2005; 190(2-3): 299-308. http://dx.doi.org/10.1016/j.surfcoat.2004.03.010

Park IS, Jang YS, Kim Y K, Lee MH, Yoon JM, Bae TS. Surface characteristics of AZ91D alloy anodized with various conditions. Surf Interf Anal 2008; 40(9): 1270-77. http://dx.doi.org/10.1002/sia.2876

Barchiche CE, Rocca E, Juers C, Hazan J, Steinmetz J. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods. Electrochim Acta 2007; 53(2): 417-25. http://dx.doi.org/10.1016/j.electacta.2007.04.030

Ghasemi A, Raja VS, Blawert C, Dietzel W, Kainer KU. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings. Surf Coat Technol 2010; 204(9-10): 1469-78. http://dx.doi.org/10.1016/j.surfcoat.2009.09.069

Wen Q, Cao FH, Shi YY, Zhang Z, Zhang JQ. The effect of phosphate on MAO of AZ91D magnesium using AC power source. Materials and Corrosion-Werkstoffe Und Korrosion 2008; 59(10): 819-24. http://dx.doi.org/10.1002/maco.200804169

Salman S, Ichino R, Okido M. Influence of calcium hydroxide and anodic solution temperature on corrosion property of anodising coatings formed on AZ31 Mg alloys. Surf Eng 2008; 24(3): 242-45. http://dx.doi.org/10.1179/174329408X282578

Birss V, Xia S, Yue R, Rateick RG. Characterization of oxide films formed on Mg-based WE43 alloy using AC/DC anodization in silicate solutions. J Electrochem Soc 2004; 151(1): B1-B10. http://dx.doi.org/10.1149/1.1629095

Zhang YJ, Yan CW, Wang FH, Lou HY, Cao CN. Study on the environmentally friendly anodizing of AZ91D magnesium alloy. Surf Coat Technol 2002; 161(1): 36-43. http://dx.doi.org/10.1016/S0257-8972(02)00342-0

Duan HP, Yan CW, Wang FH. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution. Electrochim Acta 2007; 52(15): 5002-5009. http://dx.doi.org/10.1016/j.electacta.2007.02.021

Guo HF, An MZ, Huo HB, Xu S, Wu LJ. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Appl Surf Sci 2006; 252(22): 7911-16. http://dx.doi.org/10.1016/j.apsusc.2005.09.067

Wu HL, Cheng YL, Li LL, Chen ZH, Wang HM, Zhang Z. The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films. Appl Surf Sci 2007; 253(24): 9387-94. http://dx.doi.org/10.1016/j.apsusc.2007.05.085

Fukuda H, Matsumoto Y. Effects of Na2SiO3 on anodization of Mg-Al-Zn alloy in 3 M KOH solution. Corrosion Sci 2004; 46(9): 2135-42. http://dx.doi.org/10.1016/j.corsci.2004.02.001

Chai LY, Yu X, Yang ZH, Wang YY, Okido M. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking. Corrosion Sci 2008; 50(12): 3274-79. http://dx.doi.org/10.1016/j.corsci.2008.08.038

Zhao M, Wu S, An P, Luo J. Study on the deterioration process of a chromium-free conversion coating on AZ91D magnesium alloy in NaCl solution. Appl Surf Sci 2006; 253(2): 468-75. http://dx.doi.org/10.1016/j.apsusc.2005.12.122

Liang J, Srinivasan PB, Blawert C, Dietzel W. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy. Electrochim Acta 2010; 55(22): 6802-11. http://dx.doi.org/10.1016/j.electacta.2010.05.087

Duan H, Du K, Yan C, Wang F. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochim Acta 2006; 51(14): 2898-908. http://dx.doi.org/10.1016/j.electacta.2005.08.026

Zhang YJ, Yan CW. Development of anodic film on Mg alloy AZ91D. Surf Coat Technol 2006; 201(6): 2381-86. http://dx.doi.org/10.1016/j.surfcoat.2006.04.015

van Ooij WJ, Zhu D, Stacy M, Seth A, Mugada T, Gandhi J, Puomi P. Corrosion Protection Properties of Organofunctional Silanes--An Overview. Tsinghua Sci Technol 2005; 10(6): 639-64. http://dx.doi.org/10.1016/S1007-0214(05)70134-6

Montemor MF, Ferreira MGS. Analytical and microscopic characterisation of modified bis-[triethoxysilylpropyl] tetrasulphide silane films on magnesium AZ31 substrates. Progr Organ Coat 2007; 60(3): 228-37. http://dx.doi.org/10.1016/j.porgcoat.2007.07.019

Montemor MF, Ferreira MGS. Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy. Electrochim Acta 2007; 52(27): 7486-95. http://dx.doi.org/10.1016/j.electacta.2006.12.086

Kim J, Wong KC, Wong PC, Kulinich SA, Metson JB, Mitchell KAR. Characterization of AZ91 magnesium alloy and organosilane adsorption on its surface. Appl Surf Sci 2007; 253(9): 4197-207. http://dx.doi.org/10.1016/j.apsusc.2006.09.030

Downloads

Published

2014-07-07

How to Cite

Yun, Y., Xue, D., Halsall, B. H., Vanooij, W., Schulz, M. J., & Shanov, V. (2014). The Effects of Primary Oxy-Salts on Anodizing Magnesium Alloy AZ91D. Journal of Coating Science and Technology, 1(1), 78–87. https://doi.org/10.6000/2369-3355.2014.01.01.9

Issue

Section

Articles