Vapor Permeation of Aqueous Ethanol through Agarose-Sericin Membrane

Authors

  • Kazunari Okada Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
  • Masakazu Yoshikawa Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan

DOI:

https://doi.org/10.6000/1929-6037.2015.04.03.3

Keywords:

Agarose, Melting Point Depression, Membranes, Vapor Permeation, Sericin

Abstract

A self-standing membrane was obtained from renewable polymers, such as agarose and sericin. Differential scanning calorimetric study revealed that there were two states of water in the membrane, such as bound water and free water. The membrane preferentially transported water from aqueous ethanol mixture by vapor permeation. Preliminary study revealed that the present membrane was applicable to forward osmosis.

References

Yoshikawa M, Yoshioka T, Fujime J, Murakami A. Pervaporation separation of MeOH-MTBE through agarose membranes. J Membr Sci 2000; 178: 75-78. http://dx.doi.org/10.1016/S0376-7388(00)00478-6

Yoshikawa M, Yoshioka T, Fujime J, Murakami A. Pervaporation separation of MeOH/MTBE with hydrophilic polymer/agarose blended membranes. Membrane 2001; 26: 259-264. http://dx.doi.org/10.5360/membrane.26.259

Yoshikawa M, Yoshioka T, Fujime J, Murakami A. Pervaporation separation of methanol/methyl tert-butyl ether mixtures through agarose/hydroxylethylcellulose blended membranes. J Appl Polym Sci 2002; 86: 3408-3411. http://dx.doi.org/10.1002/app.11347

Masaki K, Yoshikawa M. Pervaporation of aqueous organic mixtures through agarose membranes. Membrane 2001; 26: 155-157. http://dx.doi.org/10.5360/membrane.26.155

Yoshikawa M, Masaki K, Ishikawa M. Pervaporation separation of aqueous organic mixtures through agarose membrane. J Membr Sci 2002; 205: 293-300. http://dx.doi.org/10.1016/S0376-7388(02)00131-X

Fujita Y, Yoshikawa M. Vapor permeation of aqueous ethanol mixtures through agarose membranes. J Membr Sci 2014; 459: 114-121. http://dx.doi.org/10.1016/j.memsci.2014.01.052

Takatsu Y, Yamada H, Tsubouchi K. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 2002; 66: 2715-2718. http://dx.doi.org/10.1271/bbb.66.2715

Mondal M, Trivedy K, Kumar SN. The silk proteins, sericin and fibroin in silkworm, Bombyx mori. Caspian J Env Sci 2007; 5: 63-76.

Sothornvit R, Chollakup R, Suwnruji P. Extracted sericin from silk waste fro film formation. Songklanakarin J Sci Technol 2010; 32: 17-22. Rdo.psu.ac.th/sjstweb/journal/32-1/-125-3359-32-1-17-22.pdf

Yamada H, Fuwa N, Nomura M, Yoshikawa M, Kunugi S. Utilization of sericin as raw materials for specialty polymers. 1 Ultrafiltration performance of sericin membrane. Membrane 1993; 18: 301-303. http://dx.doi.org/10.5360/membrane.18.301

Yoshikawa M, Higuchi A, Ishikawa M, Guiver MD, Robertson GP. Vapor permeation of 2-propanol solutions through gelatin/Torlon poly(amide/imide) blended membranes. J Membr Sci 2004; 243: 89-95. http://dx.doi.org/10.1016/j.memsci.2004.05.033

Yoshikawa M, Kawamura K, Ejima A, Aoki T, Watanabe K, Guiver MD, Robertson GP. Thermostable natural protein polymers from Geobacillus thermodenitrificans DSM465 as membrane materials for vapor permeation. Membrane 2004; 29: 384-387. http://dx.doi.org/10.5360/membrane.29.384

Hughes HE, Maloney JO. The application of radioactive tracers to diffusional operations. Binary and ternary equilibrium data. Chem Eng Prog 1952; 48: 192-200.

Crank J, Park GS. Diffusion in polymers. London: Academic Press 1968.

Crank J. Mathematics of diffusion. 2nd ed. Oxford: Clarendon Press 1975.

Vieth WR. Diffusion in and through polymers. Principles and applications. München: Hanser 1991.

Mulder M. basic principles of membrane technology. 2nd ed. Dordrecht: Kluwer Academic Publishers 1996.

Riddick JA, Bunger WB, Sakano TK. Organic Solvents. 4th ed. New York: Wiley 1986.

Higuchi A, Iijima T. D.s.c. investigation of water in poly(vinyl alcohol) membranes. Polymer 1985; 26: 1207-1211. http://dx.doi.org/10.1016/0032-3861(85)90254-X

Higuchi A, Iijima T. D.s.c. investigation of the state of water in poly(vinyl alcohol-co-itaconic acid) membranes. Polymer 1985; 26: 1833-1837. http://dx.doi.org/10.1016/0032-3861(85)90011-4

Baker RW. Membrane Technology and Applications. 2nd ed. West Sussex: Wiley 2004. http://dx.doi.org/10.1002/0470020393

Yamada S, Hamaya T. Liquid permeation and separation by surface modified polyethylene membranes. J Membr Sci 1984; 17: 125-138. http://dx.doi.org/10.1016/S0376-7388(00)82290-5

Paul DR, Koros WJ. Effect of partially immobilizing sorption on permeability and the diffusion time lag. J Polym Sci Polym Phys Ed 1976; 14: 675-685. http://dx.doi.org/10.1002/pol.1976.180140409

Koros WJ, Paul DR. Transient and steady-state permeation in poly(ethylene terephthalate) above and below the glass transition. J Polym Sci: Polym Phys 1978; 16: 2171-2187. DOI: 10.1002/pol.1978.180161207

Park GS. The diffusion of some halo-methane in polystyrene. Trans Faraday Soc 1950; 46: 684-697. http://dx.doi.org/10.1039/tf9504600684

Rouse Jr PE. Diffusion of vapors in films. J Am Chem Soc 1947; 69: 1068-1073. http://dx.doi.org/10.1021/ja01197a029

Rogers CE, Stannet V, Szwarc M. The sorption, diffusion, and permeation of organic vapors in polyethylene. J Polym Sci 1960; 45: 61-82. http://dx.doi.org/10.1002/pol.1960.1204514506

Mares P. Transient permeation of organic vapors through polymer membranes. J Appl Polym Sci 1965; 9: 917-932. http://dx.doi.org/10.1002/app.1965.070090310

Cabasso I. Organic liquid mixtures separation by permselective polymer membranes. 1. Selection and characteristics of dense isotropic membranes employed in the pervaporation process. Ind Eng Chem Prod Res Dev 1983; 22: 313-319. http://dx.doi.org/10.1021/i300010a029

Zhao S, Zou L, Tang CY, Mulcathy D. Recent development in forward osmosis opportunities and challenges. J Membr Sci 2012; 396: 1-21. http://dx.doi.org/10.1016/j.memsci.2011.12.023

Chekll L, Phuntsho S, Shon HK, Vigneswaran S, Kandasamy J, Chanan A. A review of draw solutes in forward osmosis process and their use in modern applications. Desal Water Treat 2012; 43: 167-184. http://dx.doi.org/10.1080/19443994.2012.672168

Chung TS, Li X, Ong TC, Ge Q, Wang H, Han CH. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and energy applications. Curr Opin Chem Eng 2012; 1: 246-257. http://dx.doi.org/10.1016/j.coche.2012.07.004

Norman RS, Water salination: A source of energy. Science 1974; 186: 350-352. http://dx.doi.org/10.1126/science.186.4161.350

Downloads

Published

2015-09-14

How to Cite

Okada, K., & Yoshikawa, M. (2015). Vapor Permeation of Aqueous Ethanol through Agarose-Sericin Membrane. Journal of Membrane and Separation Technology, 4(3), 116–121. https://doi.org/10.6000/1929-6037.2015.04.03.3

Issue

Section

Articles