Hybrid Porphyrin-Polymeric Materials and their Amazing Applications: A Review

Authors

  • Gheorghe Fagadar-Cosma "Politehnica" University of Timisoara, Vasile Parvan Street 6, 300223-Timisoara, Romania
  • Mihaela Birdeanu National Institute for Research and Development in Electrochemistry and Condensed Matter, 1 Plautius Andronescu Street, 300224 Timisoara, Romania
  • Eugenia Fagadar-Cosma Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223, Timisoara, Romania

DOI:

https://doi.org/10.6000/1929-5995.2016.05.01.4

Keywords:

Porphyrin-polymer hybrids, aggregates, sensors, catalysts, medical applications

Abstract

Porphyrins are versatile multifunctional biomimetic molecules that are obtained by condensation of pyrrole with the desired aromatic aldehydes. The porphyrin structure can be synthetically modified by either introduction of various peripheral functional groups or metals in its core, allowing creation of various porphyrin derivatives that exhibit amazing optoelectronic properties. This feature makes porphyrins molecules extremely useful especially in hybrid combination with photonic, electronic and magnetic compounds. This review is focused on the more recently obtained porphyrin-polymeric materials and on their various analytical, industrial and medical applications. The study underlines the assembling capacity of these porphyrin-polymer hybrids to form supramolecular tunable architectures by means of the association of more building block units. Porphyrin-polymer nano- and micro-materials play a preeminent role in sensing applications involving chromophores in the formulation of organic solar cells - due to their capacity to generate photo induced charge separation centers - and as new materials with interesting catalytic properties. Besides these technical applications, the photobactericidal activity of these porphyrin–polymer materials was evaluated against Gram positive and Gram negative strains bacteria and they represent an alternative to antibiotics in order to overcome the growing bacterial multiresistance. Polymer functionalization with porphyrin is commonly used to overcome some drawbacks such as self-quenching and photo-toxicity to the skin produced by the bare porphyrins, when used as photosensitizers in the non-invasive Photodynamic therapy of cancer (PDT).

References

Ishihara S, Labuta J, Van Rossom W, et al. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys Chem Chem Phys 2014; 16: 9713-46. http://dx.doi.org/10.1039/c3cp55431g DOI: https://doi.org/10.1039/c3cp55431g

Basu J, Rohatgi-Mukherjee KK. Photoelectrochemical characterisation of porphyrin-coated electrodes. Sol Energy Mater1991; 21: 317-25. http://dx.doi.org/10.1016/0165-1633(91)90029-K DOI: https://doi.org/10.1016/0165-1633(91)90029-K

Basu BJ. Optical oxygen sensing based on luminescence quenching of platinum porphyrin dyes doped in ORMOSIL coatings. Sensor Actuat B-Chem 2007; 123: 568-77. http://dx.doi.org/10.1016/j.snb.2006.09.062 DOI: https://doi.org/10.1016/j.snb.2006.09.062

Wang T, SheY, Fu H, Li H. Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts. Catal Today 2016; 264: 185-90. http://dx.doi.org/10.1016/j.cattod.2015.07.034 DOI: https://doi.org/10.1016/j.cattod.2015.07.034

Kowalewska B, Skunik M, Karnicka K, et al. Enhancement of bio-electrocatalytic oxygen reduction at the composite film of cobalt porphyrin immobilized within the carbon nanotube-supported peroxidase enzyme. Electrochim Acta 2008; 53: 2408-15. http://dx.doi.org/10.1016/j.electacta.2007.10.005 DOI: https://doi.org/10.1016/j.electacta.2007.10.005

Hu X, Tang K, Liu SG, Zhang YY, Zou GL. Hemoglobin-biocatalysts synthesis of a conducting polyaniline. React Funct Polym 2005; 65: 239-48. http://dx.doi.org/10.1016/j.reactfunctpolym.2005.06.007 DOI: https://doi.org/10.1016/j.reactfunctpolym.2005.06.007

Shi J, Liu TWB, Chen J, et al. Transforming a targeted porphyrin theranostic agent into a PET imaging probe for cancer. Theranostics 2011; 1: 363-70. http://dx.doi.org/10.7150/thno/v01p0363 DOI: https://doi.org/10.7150/thno/v01p0363

Deda DK, Budu A, Cruz LN, Araki K, Garcia CRS. Strategies for development of antimalarials based on encapsulated por-phyrin derivatives. Mini Rev Med Chem 2014; 14: 1055-71. http://dx.doi.org/10.2174/1389557515666150101094829 DOI: https://doi.org/10.2174/1389557515666150101094829

Baldea I, Olteanu DE, Bolfa P, et al. Efficiency of photodynamic therapy on WM35 melanoma with synthetic porphyrins: role of chemical structure, intracellular targeting and antioxidant defense. J Photoch Photobiol B2015; 151: 142-52. DOI: https://doi.org/10.1016/j.jphotobiol.2015.07.019

Tauskela JS, Brunette E, Hewitt M, Mealing G, Morley P. Competing approaches to excitotoxic neuroprotection by inert and catalytic antioxidant porphyrins. Neurosci Lett 2006; 401: 236-41. http://dx.doi.org/10.1016/j.neulet.2006.03.046 DOI: https://doi.org/10.1016/j.neulet.2006.03.046

Harmon HJ, Oliver A. Optical biodetection using receptors and enzymes (porphyrin-incorporated). In: Schaudies RP, editor. Biological identification. Elsevier Ltd 2014; p. 253-6. http://dx.doi.org/10.1533/9780857099167.3.253 DOI: https://doi.org/10.1533/9780857099167.3.253

Giancane G, Valli L. State of art in porphyrin Langmuir–Blodgett films as chemical sensors. Adv Colloid Interfac 2012; 171–172: 17-35. http://dx.doi.org/10.1016/j.cis.2012.01.001 DOI: https://doi.org/10.1016/j.cis.2012.01.001

Zhu G, Sun Q, Kawazoe Y, Jena P. Porphyrin-based porous sheet: optoelectronic properties and hydrogen storage. Int J Hydrogen Energ 2015; 40: 3689-96. http://dx.doi.org/10.1016/j.ijhydene.2015.01.069 DOI: https://doi.org/10.1016/j.ijhydene.2015.01.069

O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991; 353: 737-40. http://dx.doi.org/10.1038/353737a0 DOI: https://doi.org/10.1038/353737a0

da Costa VCP, Hwang BJ, Eggen SE, Wallace MJ, Annunziata O. Formation and thermodynamic stability of (polymer + porphyrin)supramolecular structures in aqueous solutions. J Chem Thermodyn 2014; 75: 119-27. http://dx.doi.org/10.1016/j.jct.2014.02.025 DOI: https://doi.org/10.1016/j.jct.2014.02.025

El-Bindary AA, El-Sonbati AZ, Diaba MA, Ghoneim MM, Serag LS, Polymeric complexes — LXII. Coordination chemistry of supramolecular Schiff base polymer complexes. J Mol Liq 2016; 216: 318-29. http://dx.doi.org/10.1016/j.molliq.2015.12.113 DOI: https://doi.org/10.1016/j.molliq.2015.12.113

Taniguchin I, Kinugasa K, Egashira S, Higa M. Preparation of well-defined hyper-branched polymers and the CO2 separation performance and storage of gases. J Membr Sci 2016; 502: 124-32. http://dx.doi.org/10.1016/j.memsci.2015.12.032 DOI: https://doi.org/10.1016/j.memsci.2015.12.032

Ikeda A, Hatano T, Shinkai S, Akiyama T, Yamada S. Efficient photocurrent generation in novel self assembled multilayers comprised of [60]fullerene–cationic homooxacalix[3]arene inclusion complex and anionic porphyrin polymer. J Am Chem Soc 2001; 123: 4855-6. http://dx.doi.org/10.1021/ja015596k DOI: https://doi.org/10.1021/ja015596k

Takechi K, Shiga T, Motohiro T, et al. Solar cells using iodine-doped polythiophene–porphyrin polymer films. Sol Energ Mat Sol C 2006; 90: 1322-30. http://dx.doi.org/10.1016/j.solmat.2005.08.010 DOI: https://doi.org/10.1016/j.solmat.2005.08.010

Vlascici D, Pica EM, Cosma V, Fagadar-Cosma E. Potentiometric characterization of lead-selective electrodes based on a phenyl disubstituted porphyrin. J Porphyr Phthalocya 2008; 12: 772.

Grama S, Hurduc N, Fagadar-Cosma E, Vasile M, Tarabukina E, Fagadar-Cosma G. Novel porphyrin-based polysiloxanemicro material. Dig J Nanomater Bios 2010; 5: 959-73.

Itagaki Y, Nakashima S, Sadaoka Y. Optical humidity sensor using porphyrin immobilized Nafion composite films. Sensor Actuat B-Chem2009; 142: 44-8. http://dx.doi.org/10.1016/j.snb.2009.07.033 DOI: https://doi.org/10.1016/j.snb.2009.07.033

Wang L, Meyerhoff ME. Polymethacrylate polymers with appended aluminum (III)-tetraphenylporphyrins: synthesis, characterization and evaluation as macromolecular ionophores for electrochemical and optical fluoride sensors. Anal Chim Acta 2008; 611: 97-102. http://dx.doi.org/10.1016/j.aca.2008.01.070 DOI: https://doi.org/10.1016/j.aca.2008.01.070

Liu MH, Su YO. Electrocatalytic reactions by an iron porphyrin/polypyrrole modified electrode monitored by electrochemical quartz crystal microbalance. J Chin ChemSoc-Taip1999; 46: 115-9. http://dx.doi.org/10.1002/jccs.199900015 DOI: https://doi.org/10.1002/jccs.199900015

Fagadar-Cosma E, Tarabukina E, Zakharova N, et al. Hybrids formed between polyvinylpyrrolidone and an A3B porphyrin dye: behavior in aqueous solutions and chemical response to CO2 presence. Polym Int 2016; 65: 200-9. http://dx.doi.org/10.1002/pi.5047 DOI: https://doi.org/10.1002/pi.5047

Poriel C, Ferrand Y, Le Maux P, Paul-Roth C, Simonneaux G, Rault-Berthelot J. Anodic oxidation and physicochemical properties of various porphyrin-fluorenes or -spirobifluorenes: Synthesis ofnew polymers for heterogeneous catalytic reactions. J Electroanal Chem 2005; 583: 92-103. http://dx.doi.org/10.1016/j.jelechem.2005.05.005 DOI: https://doi.org/10.1016/j.jelechem.2005.05.005

Birdeanu M, Fagadar-Cosma E. The self-assembly of porphyrin derivatives into 2D and 3D architectures. In:Putz M, editor. Quantum nanosystems: structure, properties and interactions. Toronto-New Jersey: Apple Academics Press 2014: p. 173-206. http://dx.doi.org/10.1201/b17412-6 DOI: https://doi.org/10.1201/b17412-6

Drain CM, Varotto A, Radivojevic I. Self-organized porphyrinic materials. Chem Rev 2009; 109: 1630-58. http://dx.doi.org/10.1021/cr8002483 DOI: https://doi.org/10.1021/cr8002483

Guo L. Side-chain-controlled H- and J-aggregation of amphiphilic porphyrins in CTAB micelles. J Colloid Interf Sci 2008; 322: 281-6. http://dx.doi.org/10.1016/j.jcis.2008.02.041 DOI: https://doi.org/10.1016/j.jcis.2008.02.041

Fagadar-Cosma E, Fagadar-Cosma G, Vasile M, Enache C. Synthesis, spectroscopic and self-assembling characterization of novel photoactive mixed aryl-substituted porphyrin. Curr Org Chem 2012; 16: 931-41. http://dx.doi.org/10.2174/138527212800194755 DOI: https://doi.org/10.2174/138527212800194755

Zhang Z, Li X, Zhao Q, et al. Facile synthesis and characterizations of copper–zinc-10,15,20-tetra(4-pyridyl) porphyrin (Cu–ZnTPyP) coordination polymer with hexagonal micro-lump and micro-prism morphologies. J Colloid Interf Sci 2014; 432: 229-35. http://dx.doi.org/10.1016/j.jcis.2014.07.005 DOI: https://doi.org/10.1016/j.jcis.2014.07.005

Rieter WJ, Pott KM, Taylor KML, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 2008; 130: 11584-5. http://dx.doi.org/10.1021/ja803383k DOI: https://doi.org/10.1021/ja803383k

Vlascici D, Fagadar-Cosma E, Pica EM, Cosma V, Bizerea O, Mihailescu G, Olenic L. Free base porphyrins as ionophores for heavy metal sensors. Sensors 2008; 8: 4995-5004. http://dx.doi.org/10.3390/s8084995 DOI: https://doi.org/10.3390/s8084995

Monti D, Nardis S, Stefanelli M, Paolesse R, Di Natale C, D'Amico A. Porphyrin-based nanostructures for sensing applications. J Sensors 2009; 2009: 10 pages. http://dx.doi.org/10.1155/2009/856053 DOI: https://doi.org/10.1155/2009/856053

Evyapan M, Dunbar ADF. Controlling surface adsorption to enhance the selectivity of porphyrinbased gas sensors. Appl Surf Sci 2016; 362: 191-201. http://dx.doi.org/10.1016/j.apsusc.2015.11.210 DOI: https://doi.org/10.1016/j.apsusc.2015.11.210

Wang Y, Wu F. Amphiphilic acrylamide-based copolymer with porphyrin pendants for the highly selective detection of Hg2+ in aqueous solutions. Polymer 2015; 56: 223-8. http://dx.doi.org/10.1016/j.polymer.2014.11.037 DOI: https://doi.org/10.1016/j.polymer.2014.11.037

Vlascici D, Popa I, Chiriac VA, Fagadar-Cosma G, Popovici H, Fagadar-Cosma E. Potentiometric detection and removal of copper using porphyrins. Chem Cent J 2013; 7: 111-8. http://dx.doi.org/10.1186/1752-153X-7-111 DOI: https://doi.org/10.1186/1752-153X-7-111

Vlascici D, Fagadar-Cosma E, Popa I, Vlad Chiriac V, Gil-Agusti M. A novel sensor for monitoring of iron (III) ions based on porphyrins. Sensors 2012; 12: 8193-203. http://dx.doi.org/10.3390/s120608193 DOI: https://doi.org/10.3390/s120608193

Wang L, Fang G, Li L, Cao D. Synthesis, characterization and detection of Concanavalin A based on a mannose-substituted conjugated polymer through aggregation-enhanced FRET. Sensor Actuat B-Chem 2016; 229: 47-56. http://dx.doi.org/10.1016/j.snb.2016.01.111 DOI: https://doi.org/10.1016/j.snb.2016.01.111

Matsui J, Sodeyama T, Saiki Y, et al. Face-to-face porphyrin moieties assembled with spacing for pyrazine recognition in molecularly imprinted polymers. Biosens Bioelectron 2009; 25: 635-9. http://dx.doi.org/10.1016/j.bios.2009.01.047 DOI: https://doi.org/10.1016/j.bios.2009.01.047

Harriman A, Porter G, Richoux MC.P hotosensitised reduction of water to hydrogen using water-soluble zinc porphyrins. J ChemSoc Farad T 21981; 77: 833-44. DOI: https://doi.org/10.1039/f29817700833

Miyamoto T, Zhu Q, Igrashi M, Kodama R, Maeno S, Fukushima M. Catalytic oxidation of tetrabromobisphenol A byiron(III)-tetrakis(p-sulfonatephenyl)porphyrin catalyst supported oncyclodextrin polymers with potassium monopersulfate. J Mol Catal B-Enzym 2015; 119: 64-70. http://dx.doi.org/10.1016/j.molcatb.2015.06.002 DOI: https://doi.org/10.1016/j.molcatb.2015.06.002

Ladomenou K, Natali M, Iengo E, Charalampidis G, Scandola F, Coutsolelos AG. Photochemical hydrogen generation with porphyrin-based systems. Coord Chem Rev 2015; 304-305: 38-54. http://dx.doi.org/10.1016/j.ccr.2014.10.001 DOI: https://doi.org/10.1016/j.ccr.2014.10.001

Harriman A, Porter G. Photochemistry of manganese porphyrins. J Chem Soc Farad T 2 1979; 75: 1532-42. http://dx.doi.org/10.1039/F29797501532 DOI: https://doi.org/10.1039/F29797501532

Kellett RM, Spiro TG. Cobalt (I) porphyrin catalysis of hydro-gen production from water. Inorg Chem 1985; 24: 2378-82. http://dx.doi.org/10.1021/ic00209a012 DOI: https://doi.org/10.1021/ic00209a012

Huang Y, Yang L, Huang M, et al. Polystyrene microsphere-immobilized palladium(II) porphyrin as mild, reusable, and highly efficient catalyst for Heck reaction. Particuology 2015; 22: 128-33. http://dx.doi.org/10.1016/j.partic.2014.08.003 DOI: https://doi.org/10.1016/j.partic.2014.08.003

Pamin K, Prończuk M, Basąg S, Kubiak W, Sojka Z, Połtowicz J. A new hybrid porphyrin-heteropolyacid material: Synthesis, characterization and investigation as catalyst in Baeyer–Villiger oxidation. Synergistic effect. Inorg Chem Commun 2015; 59: 13-6. http://dx.doi.org/10.1016/j.inoche.2015.06.005 DOI: https://doi.org/10.1016/j.inoche.2015.06.005

Chang CY, Zuo L, Yip HL, et al. A versatile fluoro-containing low-band gap polymer for efficient semitransparent and tandem polymer solar cells. Adv Funct Mater 2013; 23: 5084-90. http://dx.doi.org/10.1002/adfm201301557 DOI: https://doi.org/10.1002/adfm201301557

Yusoff ARBM, Kim D, Kim H P, Shneider F K, Da Silva WJ, Jang J. A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy Environ Sci 2015; 8: 303-16. http://dx.doi.org/10.1039/C4EE03048F DOI: https://doi.org/10.1039/C4EE03048F

Kwak ES, Lee W, Park NG, Kim J, Lee H. Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells. Adv Funct Mater 2009; 19: 1093-9. http://dx.doi.org/10.1002/adfm.200801540 DOI: https://doi.org/10.1002/adfm.200801540

Fan D, Xia X, Ma H, Du B, Wei Q. Honeycomb-patterned fluorescent films fabricated by self-assembly of surfactant-assisted porphyrin/polymer composites. J Colloid Interf Sci 2013; 402: 146-50. http://dx.doi.org/10.1016/j.jcis.2013.03.030 DOI: https://doi.org/10.1016/j.jcis.2013.03.030

Fujitsuka M, Satyanarayana K, Luh TY, Majima T. Singlet–singlet and singlet–triplet annihilations in structure-regulated porphyrin polymers. J Photochem Photobiol A Chem 2015. http://dx.doi.org/10.1016/j.jphotochem.2015.10.011 DOI: https://doi.org/10.1016/j.jphotochem.2015.10.011

Arrechea S, Molina-Ontoria A, Aljarilla A, de la Cruz P, Langa F, Echegoyen L. New acceptor–π-porphyrin–π-acceptor systems for solution-processed small molecule organic solar cells. Dyes Pigments 2015; 121: 109-17. http://dx.doi.org/10.1016/j.dyepig.2015.04.037 DOI: https://doi.org/10.1016/j.dyepig.2015.04.037

Angiolini L, Benelli T, Cocchi V, Lanzi M, Salatelli E. Side chain porphyrin moiety linked to polymer-fullerene composite solar cell. React Funct Polym 2013; 73: 1198-206. http://dx.doi.org/10.1016/j.reactfunctpolym.2013.05.007 DOI: https://doi.org/10.1016/j.reactfunctpolym.2013.05.007

Han K, Chen S, Chen WH, et al. Synergistic gene and drug tumor therapy using a chimeric peptide. Biomaterials 2013; 34: 4680-9. http://dx.doi.org/10.1016/j.biomaterials.2013.03.010 DOI: https://doi.org/10.1016/j.biomaterials.2013.03.010

Ma D, Zhao Y, Zhou XY, et al. Photoenhanced gene transfection by a star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms. Macromol Biosci 2013; 13: 1221-7. http://dx.doi.org/10.1002/mabi.201300139 DOI: https://doi.org/10.1002/mabi.201300139

Ma D, Lin QM, Zhang LM, Liang YY, Xue W. A star-shaped porphyrin-arginine functionalized poly(L-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials 2014; 35: 4357-67. http://dx.doi.org/10.1016/j.biomaterials.2014.01.070 DOI: https://doi.org/10.1016/j.biomaterials.2014.01.070

Jing L, Liang X, Li X, Yang Y, Dai Z. Covalent attachment of Mn-porphyrin onto doxorubicin-loaded poly(lactic acid) nanoparticles for potential magnetic resonance imaging and pH-sensitive drug delivery. Acta Biomater 2013; 9: 9434-41. http://dx.doi.org/10.1016/j.actbio.2013.08.018 DOI: https://doi.org/10.1016/j.actbio.2013.08.018

Su S, Ding Y, Li Y, Wu Y, Nie G. Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer. Biomaterials 2016; 80: 169-78. http://dx.doi.org/10.1016/j.biomaterials.2015.11.058 DOI: https://doi.org/10.1016/j.biomaterials.2015.11.058

Krouit M, Granet R, Krausz P. Photobactericidal films from porphyrins grafted to alkylated cellulose – synthesis and bactericidal properties. Eur Polym J 2009; 45: 1250-9. http://dx.doi.org/10.1016/j.eurpolymj.2008.11.036 DOI: https://doi.org/10.1016/j.eurpolymj.2008.11.036

Managa M, Nyokong T. Photodynamic antimicrobial chemotherapy activity of gallium tetra-(4-carboxyphenyl) porphyrin when conjugated to differently shaped platinum nanoparticles. J Mol Struct 2015; 1099: 432-40. http://dx.doi.org/10.1016/j.molstruc.2015.06.077 DOI: https://doi.org/10.1016/j.molstruc.2015.06.077

TaKeki JKN, Ouk TS, Zerrouki R, Faugeras PA, Sol V, Brouillette F. Synthesis and photobactericidal properties of a neutral porphyrin grafted onto lignocellulosic fibers. Mat Sci Eng C 2016; 62: 61-7. http://dx.doi.org/10.1016/j.msec.2016.01.028 DOI: https://doi.org/10.1016/j.msec.2016.01.028

Dahl TA, Midden WR, Hartman PE. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. J Bacteriol 1989; 171: 2188-94. DOI: https://doi.org/10.1128/jb.171.4.2188-2194.1989

Zhang GD, Harada A, Nishiyama N, et al. Polyion complex micelles entrapping cationic dendrimerporphyrin: effective photosensitizer for photodynamic therapy of cancer. J Control Release 2003; 93: 141-50. http://dx.doi.org/10.1016/j.jconrel.2003.05.002 DOI: https://doi.org/10.1016/j.jconrel.2003.05.002

Dai XH, Wang ZM, Gao LY, et al. Starshaped poly(L-lactide)-b-poly(ethylene glycol) with porphyrin core: synthesis, self-assembly, drug-release behavior and singlet oxygen research. New J Chem 2014; 38: 3569-78. http://dx.doi.org/10.1039/C3NJ01621H DOI: https://doi.org/10.1039/C3NJ01621H

De Souza TGB, Vivas MG, Mendonça CR, et al. Studying the intersystem crossing rate and triplet quantum yield of meso-substituted porphyrins by means of pulse train fluorescence technique. J Porphyrins Phthalocyanines 2016. http://dx.doi.org/10.1142/S1088424616500048 DOI: https://doi.org/10.1142/S1088424616500048

Deda DK, Uchoa AF, Caritá E, Baptista MS, Toma HE, Araki K. A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int J Pharm 2009; 376: 76-83. http://dx.doi.org/10.1016/j.ijpharm.2009.04.024 DOI: https://doi.org/10.1016/j.ijpharm.2009.04.024

Dai XH, Jin H, Cai MH, et al. Fabrication of thermosensitive, star-shaped poly(L-lactide)-block-poly(N-isopropylacrylamide) copolymers with porphyrin core for photodynamic therapy. React Funct Polym 2015; 89: 9-17. http://dx.doi.org/10.1016/j.reactfunctpolym.2015.02.002 DOI: https://doi.org/10.1016/j.reactfunctpolym.2015.02.002

Hu H, Sheng Y, Ye M, Qian Y, Tang J, Shen Y. A porphyrin-based magnetic and fluorescent dual-modal nanoprobe for tumor imaging. Polymer 2016; 88: 94-101. http://dx.doi.org/10.1016/j.polymer.2016.02.026 DOI: https://doi.org/10.1016/j.polymer.2016.02.026

Kotova SL, Timofeeva VA, Belkova GV, Aksenova NA, Solovieva AB. Porphyrin effect on the surface morphology of amphiphilic polymers as observed by atomic force microscopy. Micron 2012; 43: 445-9. http://dx.doi.org/10.1016/j.micron.2011.10.025 DOI: https://doi.org/10.1016/j.micron.2011.10.025

Dong X, Wei C, Lu L, Liu T, Lv F. Fluorescent nanogel based on four-arm PEG–PCL copolymer with porphyrin core for bioimaging. Mat Sci Eng C 2016; 61: 214-9. http://dx.doi.org/10.1016/j.msec.2015.12.037 DOI: https://doi.org/10.1016/j.msec.2015.12.037

Tao Y, Xu Q, Li N, Lu J, Wang L, Xia X. Synthesis and photoluminescent property of star polymers with carbzole pendent and a zinc porphyrin core by ATRP. Polymer 2011; 52: 4261-7. http://dx.doi.org/10.1016/j.polymer.2011.07.025 DOI: https://doi.org/10.1016/j.polymer.2011.07.025

Zhang Y, Lovell JF. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2012; 2: 905-15. http://dx.doi.org/10.7150/thno.4908 DOI: https://doi.org/10.7150/thno.4908

Huang H, Hernandez R, Geng J, et al. A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 2016; 76: 25-32. http://dx.doi.org/10.1016/j.biomaterials.2015.10.049 DOI: https://doi.org/10.1016/j.biomaterials.2015.10.049

Downloads

Published

2016-04-18

How to Cite

Fagadar-Cosma, G., Birdeanu, M., & Fagadar-Cosma, E. (2016). Hybrid Porphyrin-Polymeric Materials and their Amazing Applications: A Review. Journal of Research Updates in Polymer Science, 5(1), 39–51. https://doi.org/10.6000/1929-5995.2016.05.01.4

Issue

Section

Articles