Direct Impedimetric Detection and Isolation of Bacillus Cereus using Modified Platinum Electrode

Authors

  • Aashis S. Roy Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
  • Praveen C. Ramamurthy Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012, India

DOI:

https://doi.org/10.6000/1929-5995.2017.06.04.1

Keywords:

Bacillus cereus, Magnetic nanoparticle, Cyclovoltammetry, Sweep step function.

Abstract

This work proposes a technique for isolation of bacteria using magnetic nanoparticles. The magnetic nanoparticles that are prepared by a sol-gel method using citric acid and nano-ferrites are characterized for structural and morphology by X-ray diffraction (XRD) and Transmission electron microscope (TEM), respectively. The prepared nano-ferrites coated with poly vinyl alcohol (PVA) over platinum electrode are used for detection of Bacillus Cereus. The isolated bacterial cells from colloidal solution are treated with zinc ferrite for 12 h, and it is observed that the cells are coagulated with the nanoparticle when allowed to settle down. This is further filtered by different size of filter paper to get less than 0.1% of cells in water. Various electrochemical parameters like cyclovoltammetry (CV), sweep step function, Tafel plot, AC impedance are studied employing the modified platinum electrode. It is observed through CV graph that the peaks are formed at -0.25 V due to the oxidation of bacterial cells, which is further supported by sweep step function graph. Therefore, this is one of the economically efficient techniques to detect and isolate the Bacillus cereus from a colloidal solution.

References

Fan H, et al. A new electrochemical biosensor for DNA detection based on molecular recognition and lead sulfide nanoparticles. Anal Biochem 2011; 419(2): 168-172. https://doi.org/10.1016/j.ab.2011.08.005 DOI: https://doi.org/10.1016/j.ab.2011.08.005

Lazcka O, Campo FJD, Muñoz FX. Pathogen detection: A perspective of traditional methods and biosensors. Biosens Bioelectron 2007; 22(7) 1205-1217. https://doi.org/10.1016/j.bios.2006.06.036 DOI: https://doi.org/10.1016/j.bios.2006.06.036

Shamansky LM, Davis CB, Stuart JK, Kuhr WG. Immobilization and detection of DNA on microfluidic chips. Talanta 2001; 55(5): 909-918. https://doi.org/10.1016/S0039-9140(01)00501-X DOI: https://doi.org/10.1016/S0039-9140(01)00501-X

Xu M, Wang R, Li Y. Rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 2016; 148: 200-208. https://doi.org/10.1016/j.talanta.2015.10.082 DOI: https://doi.org/10.1016/j.talanta.2015.10.082

Wang Y, Ye Z, Ying Y. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria. Sensors 2012; 12(3): 3449-3471. https://doi.org/10.3390/s120303449 DOI: https://doi.org/10.3390/s120303449

Lê HQA, Chebil S, Makrouf B, Sauriat-Dorizon H, Mandrand B, Korri-Youssoufi H. Effect of the size of electrode on electrochemical properties of ferrocene-functionalized polypyrrole towards DNA sensing. Talanta 2010; 81(4): 1250-1257. https://doi.org/10.1016/j.talanta.2010.02.017 DOI: https://doi.org/10.1016/j.talanta.2010.02.017

Colquhoun KO, Timms S, Fricker CR. Detection of Escherichia coli in potable water using direct impedance technology. J Appl Bacteriol 1995; 79(6): 635-639. https://doi.org/10.1111/j.1365-2672.1995.tb00948.x DOI: https://doi.org/10.1111/j.1365-2672.1995.tb00948.x

Adányi N, Váradi M, Kim N, Szendrö I. Development of new immunosensors for determination of contaminants in food. Curr Appl Phys 2006; 6(2): 279-286. https://doi.org/10.1016/j.cap.2005.07.057 DOI: https://doi.org/10.1016/j.cap.2005.07.057

Varshney M, Li Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron 2007; 22(11): 2408-2414. https://doi.org/10.1016/j.bios.2006.08.030 DOI: https://doi.org/10.1016/j.bios.2006.08.030

Varshney M, Li Y, Srinivasan B, Tung S. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sens Actuators B Chem 2007; 128(1): 99-107. https://doi.org/10.1016/j.snb.2007.03.045 DOI: https://doi.org/10.1016/j.snb.2007.03.045

Daniels JS, Pourmand N. Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis 2007; 19(12): 1239-1257. https://doi.org/10.1002/elan.200603855 DOI: https://doi.org/10.1002/elan.200603855

Li D, et al. Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7. Anal Chim Acta 2011; 687(1): 89-96. https://doi.org/10.1016/j.aca.2010.12.018 DOI: https://doi.org/10.1016/j.aca.2010.12.018

Tlili C, Jaffrezic-Renault NJ, Martelet C, Korri-Youssoufi H. Direct electrochemical probing of DNA hybridization on oligonucleotide-functionalized polypyrrole. Mater Sci Eng C 2008; 28(5): 848-854. https://doi.org/10.1016/j.msec.2007.10.061 DOI: https://doi.org/10.1016/j.msec.2007.10.061

Barreiros dos Santos M, et al. Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry 2015; 101: 146-152. https://doi.org/10.1016/j.bioelechem.2014.09.002 DOI: https://doi.org/10.1016/j.bioelechem.2014.09.002

Watts RJ, Wyeth MS, Finn DD, Teel AL. Optimization of Ti/SnO2–Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J Appl Electrochem 2008; 38(1): 31-37. https://doi.org/10.1007/s10800-007-9391-4 DOI: https://doi.org/10.1007/s10800-007-9391-4

Zanin H, et al. Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution. J Appl Electrochem 2013; 43(3): 323-330. https://doi.org/10.1007/s10800-012-0491-4 DOI: https://doi.org/10.1007/s10800-012-0491-4

Park M-K, Hirematha N, Weerakoon KA, Vaglenov KA, Barbaree JM, Chin BA. Effects of Surface Morphologies of Fresh Produce on the Performance of Phage-Based Magnetoelastic Biosensors. J Electrochem Soc 2013; 160(1): B6-B12. https://doi.org/10.1149/2.059301jes DOI: https://doi.org/10.1149/2.059301jes

Reiman RW, Atchley DH, Voorhees KJ. Indirect detection of Bacillus anthracis using real-time PCR to detect amplified gamma phage DNA. J Microbiol Methods 2007; 68(3): 651-653. https://doi.org/10.1016/j.mimet.2006.11.004 DOI: https://doi.org/10.1016/j.mimet.2006.11.004

Wang M, et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. J Pharm Biomed Anal 2003; 3(5): 1117-1125. https://doi.org/10.1016/S0731-7085(03)00411-4 DOI: https://doi.org/10.1016/S0731-7085(03)00411-4

Merkoçi A. Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioelectron 2010; 26(4): 1164-1177. https://doi.org/10.1016/j.bios.2010.07.028 DOI: https://doi.org/10.1016/j.bios.2010.07.028

Torres-Chavolla E, Alocilja EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron 2011; 26(11): 4614-4618. https://doi.org/10.1016/j.bios.2011.04.055 DOI: https://doi.org/10.1016/j.bios.2011.04.055

Yang H, Zhou H, Hao H, Gong Q, Nie K. Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sens Actuators B Chem 2016; 229: 297-304. https://doi.org/10.1016/j.snb.2015.08.034 DOI: https://doi.org/10.1016/j.snb.2015.08.034

Geng P, et al. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy. Electrochimica Acta 2008; 53(14): 4663-4668. https://doi.org/10.1016/j.electacta.2008.01.037 DOI: https://doi.org/10.1016/j.electacta.2008.01.037

Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens Bioelectron 2016; 80: 582-589. https://doi.org/10.1016/j.bios.2016.02.032 DOI: https://doi.org/10.1016/j.bios.2016.02.032

Kang X, Pang G, Chen Q, Liang X. Fabrication of Bacillus cereus electrochemical immunosensor based on double-layer gold nanoparticles and chitosan. Sens Actuators B Chem 2013; 177: 1010-1016. https://doi.org/10.1016/j.snb.2012.12.018 DOI: https://doi.org/10.1016/j.snb.2012.12.018

Porcellato D, Narvhus J, Skeie SB. Detection and quantification of Bacillus cereus group in milk by droplet digital PCR. J Microbiol Methods 2016; 127: 1-6.

https://doi: 10.1016/j.mimet.2016.05.012 DOI: https://doi.org/10.1016/j.mimet.2016.05.012

Maalouf R, Hassen WM, Fournier-Wirth C, Coste J, Jaffrezic-Renault N. Comparison of two innovatives approaches for bacterial detection: paramagnetic nanoparticles and self-assembled multilayer processes. Microchim Acta 2008; 163(3-4): 157-161. https://doi.org/10.1007/s00604-008-0008-3 DOI: https://doi.org/10.1007/s00604-008-0008-3

Sohni Y, Kanjilal S, Kapur V. Cloning and development of synthetic internal amplification control for Bacillus anthracis real-time polymerase chain reaction assays. Diagn Microbiol Infect Dis 2008; 61(4): 471-475. https://doi.org/10.1016/j.diagmicrobio.2008.04.005 DOI: https://doi.org/10.1016/j.diagmicrobio.2008.04.005

Graham DL, Ferreira HA, Feliciano N, Freitas PP, Clarke LA, Amaral MD. Magnetic field-assisted DNA hybridisation and simultaneous detection using micron-sized spin-valve sensors and magnetic nanoparticles. Sens Actuators B Chem 2005; 107(2): 936-944. https://doi.org/10.1016/j.snb.2004.12.071 DOI: https://doi.org/10.1016/j.snb.2004.12.071

Martin E, Savadogo O, Guiot SR, Tartakovsky B. Electrochemical characterization of anodic biofilm development in a microbial fuel cell. J Appl Electrochem 2013; 43(5): 533-540. https://doi.org/10.1007/s10800-013-0537-2 DOI: https://doi.org/10.1007/s10800-013-0537-2

Wilkins JR. Use of platinum electrodes for the electrochemical detection of bacteria. Appl Environ Microbiol 1978. DOI: https://doi.org/10.1128/aem.36.5.683-687.1978

Zhang D, Chen S, Qin L, Li R, Wang P, Li Y. The novel immunobiosensors for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. presented at the Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings 2005; vol. 7 pp. 7111-7113.

Ding C, Zhong H, Zhang S. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using nanoCuS tags. Biosens Bioelectron 2008; 23(8): 1314-1318. https://doi.org/10.1016/j.bios.2007.12.005 DOI: https://doi.org/10.1016/j.bios.2007.12.005

Hashim M, et al. Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J Alloys Compd 2013; 549: 348-357. https://doi.org/10.1016/j.jallcom.2012.08.039 DOI: https://doi.org/10.1016/j.jallcom.2012.08.039

Ch and Ladole R.A. Preparation and Characterization of Spinel Zinc Ferrite ZnFe2O4. Int J Chem Sci 2012; 10(3): 1230-1234.

Jiang X, Chen K, Han H, Ultrasensitive electrochemical detection of Bacillus thuringiensis transgenic sequence based on in situ Ag nanoparticles aggregates induced by biotin–streptavidin system. Biosens Bioelectron 2011; 28(1): 464-468. https://doi.org/10.1016/j.bios.2011.07.042 DOI: https://doi.org/10.1016/j.bios.2011.07.042

Kerman K, Matsubara Y, Morita Y, Takamura Y, Tamiya E. Peptide nucleic acid modified magnetic beads for intercalator based electrochemical detection of DNA hybridization. Sci Technol Adv Mater 2004; 5(3): 351-357. https://doi.org/10.1016/j.stam.2004.01.009 DOI: https://doi.org/10.1016/j.stam.2004.01.009

Setterington EB, Alocilja EC. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens. Biosensors 2012; 2(1): 15-31. https://doi.org/10.3390/bios2010015 DOI: https://doi.org/10.3390/bios2010015

Shabani A, Marquette CA, Mandeville R, Lawrence MF. Carbon microarrays for the direct impedimetric detection of Bacillus anthracis using Gamma phages as probes. Analyst 2013; 138(5): 1434-1440. https://doi.org/10.1039/c3an36830k DOI: https://doi.org/10.1039/c3an36830k

Xu M, Wang R, Li Y. Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 2017; 162: 511-522. https://doi.org/10.1016/j.talanta.2016.10.050 DOI: https://doi.org/10.1016/j.talanta.2016.10.050

Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv 2008; 26(2): 135-150. https://doi.org/10.1016/j.biotechadv.2007.10.003 DOI: https://doi.org/10.1016/j.biotechadv.2007.10.003

Mannoor MS, Zhang S, Link AJ, McAlpine MC. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci 2010; 107(45): 19207-19212. https://doi.org/10.1073/pnas.1008768107 DOI: https://doi.org/10.1073/pnas.1008768107

Liao LB, Xiao XM. Electronic detection of DNA utilizing ferrocenyl peptide conjugates probe. Sens Actuators B Chem 2006; 115(1): 465-472. https://doi.org/10.1016/j.snb.2005.10.010 DOI: https://doi.org/10.1016/j.snb.2005.10.010

Maalouf R, et al. Label-Free Detection of Bacteria by Electrochemical Impedance Spectroscopy: Comparison to Surface Plasmon Resonance. Anal Chem 2007; 79(13): 4879-4886. https://doi.org/10.1021/ac070085n DOI: https://doi.org/10.1021/ac070085n

Li Y, et al. Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens Bioelectron 2014; 58: 193-199. https://doi.org/10.1016/j.bios.2014.02.045 DOI: https://doi.org/10.1016/j.bios.2014.02.045

Barreiros dos Santos M, Agusil JP, Prieto-Simón B, Sporer C, Teixeira V, Samitier J. Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens Bioelectron 2013; 45: 174-180. https://doi.org/10.1016/j.bios.2013.01.009 DOI: https://doi.org/10.1016/j.bios.2013.01.009

Güner A, Çevik E, Şenel M, Alpsoy L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem 2017; 229: 358-365. https://doi.org/10.1016/j.foodchem.2017.02.083 DOI: https://doi.org/10.1016/j.foodchem.2017.02.083

Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM. Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation. Biosens Bioelectron 2009; 24(11): 3365-3371. https://doi.org/10.1016/j.bios.2009.04.047 DOI: https://doi.org/10.1016/j.bios.2009.04.047

Downloads

Published

2017-12-28

How to Cite

Roy, A. S., & Ramamurthy, P. C. (2017). Direct Impedimetric Detection and Isolation of Bacillus Cereus using Modified Platinum Electrode. Journal of Research Updates in Polymer Science, 6(4), 118–125. https://doi.org/10.6000/1929-5995.2017.06.04.1

Issue

Section

Articles