Investigation of Different Carbon Materials with Different Coating Methods as Micro Porous Layer for Proton Exchange Membrane Fuel Cells

Authors

  • Yu-Hsu Liu Dept. of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan
  • Ting-Chu Jao Dept. of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan
  • Wei-Jen Tzeng Dept. of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan
  • Guo-Bin Jung Dept. of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan
  • Shih-Yuan Sun Dept. of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan
  • Cheng-Tang Wang Dept. of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan

DOI:

https://doi.org/10.6000/1929-6002.2013.02.01.4

Keywords:

Micro porous layer (MPL), proton exchange membrane fuel cell (PEMFC), gas diffusion layer (GDL), spray coating, doctor bladed coating

Abstract

In this work, two types of carbon - Vulcan XC-72R, and vapor-grown carbon fiber (VGCF, 7μm in length and 100 nm in diameter) were investigated as materials composing a micro porous layer (MPL). These carbon materials were either sprayed or doctor bladed on commercial carbon paper (GDS 340, CeTech Co., Ltd., Taiwan) to form an MPL with various carbon loadings and various polytetrafluoroethene (PTFE) contain ratio. All of the home-made GDLs were assembly with commercial catalyst coated membranes (CCMs, General Optics Corp., Taiwan) for fuel cell performance test. All of the membrane electrode assembly (MEA) samples were investigated by the polarization curve and Electrochemical Impedance Spectroscopy (EIS).

References

Barbir F, Yazici S. Status and development of PEM fuel cell technology. Int J Energ Res 2008; 32: 369-78. http://dx.doi.org/10.1002/er.1371

Wang Y, Al Shakhshir S, Li X. Development and impact of sandwich wettability structure for gas distribution media on PEM fuel cell performance. Appl Energ 2011; 88: 2168-75. http://dx.doi.org/10.1016/j.apenergy.2010.12.054

Zamel N, Litovsky E, Shakhshir S, Li X, Kleiman J. Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of −20°C to +120°C. Appl Energ 2011; 88: 3042-50.

Yuan W, Tang Y, Yang X, Wan Z. Porous metal materials for polymer electrolyte membrane fuel cells – A review. Appl Energ 2012; 94: 309-29. http://dx.doi.org/10.1016/j.apenergy.2012.01.073

Lim C. Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim Acta 2004; 49: 4149-56. http://dx.doi.org/10.1016/j.electacta.2004.04.009

Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M. Diffusion layer parameters influencing optimal fuel cell performance. J Power Sources 2000; 86: 250-4. http://dx.doi.org/10.1016/S0378-7753(99)00489-9

Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M. Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure. J Appl Electrochem 2000; 30: 641-6. http://dx.doi.org/10.1023/A:1004088402496

Passalacqua E, Squadrito G, Lufrano F, Patti A, Giorgi L. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes. J Appl Electrochem 2001; 31: 449-54. http://dx.doi.org/10.1023/A:1017547112282

Yu J, Islam MN, Matsuura T, Tamano M, Hayashi Y, Hori M. Improving the Performance of a PEMFC with Ketjenblack EC-600JD Carbon Black as the Material of the Microporous Layer. Electrochem Solid-State Lett 2005; 8: A320. http://dx.doi.org/10.1149/1.1904504

Wang X, Zhang H, Zhang J, Xu H, Tian Z, Chen J, et al. Micro-porous layer with composite carbon black for PEM fuel cells. Electrochim Acta 2006; 51: 4909-15. http://dx.doi.org/10.1016/j.electacta.2006.01.048

Yan W-M, Wu D-K, Wang X-D, Ong A-L, Lee D-J, Su A. Optimal microporous layer for proton exchange membrane fuel cell. J Power Sources 2010; 195: 5731-4. http://dx.doi.org/10.1016/j.jpowsour.2010.03.041

Park S, Lee J-W, Popov BN. Effect of carbon loading in microporous layer on PEM fuel cell performance. J Power Sources 2006; 163: 357-63. http://dx.doi.org/10.1016/j.jpowsour.2006.09.020

Chang H-M, Lin C-W, Chang M-H, Shiu H-R, Chang W-C, Tsau F-H. Optimization of polytetrafluoroethylene content in cathode gas diffusion layer by the evaluation of compression effect on the performance of a proton exchange membrane fuel cell. J Power Sources 2011; 196: 3773-80. http://dx.doi.org/10.1016/j.jpowsour.2010.12.090

Ge J, Higier A, Liu H. Effect of gas diffusion layer compression on PEM fuel cell performance. J Power Sources 2006; 159: 922-7. http://dx.doi.org/10.1016/j.jpowsour.2005.11.069

Jung GB, Tzeng WJ, Jao TC, Liu YH, Yeh CC. Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells. Appl Energ 2012.

Downloads

Published

2013-02-28

How to Cite

Liu, Y.-H., Jao, T.-C., Tzeng, W.-J., Jung, G.-B., Sun, S.-Y., & Wang, C.-T. (2013). Investigation of Different Carbon Materials with Different Coating Methods as Micro Porous Layer for Proton Exchange Membrane Fuel Cells. Journal of Technology Innovations in Renewable Energy, 2(1), 31–38. https://doi.org/10.6000/1929-6002.2013.02.01.4

Issue

Section

Articles