Differences in Parameters of an Embryo In Vitro Production Program between Cattle (Bos Indicus) and Buffaloes (Bubalus bubalis)

Authors

  • Jesús Alfredo Berdugo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 No 59a 110. Bl 50 of 231 Medellín, Colombia
  • Ariel Marcel Tarazona-Morales BIOGENESIS, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 No 59a 110. Bl 50 of 231 Medellín, Colombia
  • José Julian Echevererry BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 No 59a 110. Bl 50 of 231 Medellín, Colombia
  • Jose Luis Konrad IBRA, Catedra de Teriogenologia, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina Sargento Cabral 2139 (3400) Corrientes Capital, Argentina
  • Gustavo Angel Crudeli IBRA, Catedra de Teriogenologia, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina Sargento Cabral 2139 (3400) Corrientes Capital, Argentina
  • Albeiro Lopéz-Herrera BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 No 59a 110. Bl 50 of 231 Medellín, Colombia

DOI:

https://doi.org/10.6000/1927-520X.2020.09.05

Keywords:

IVPE, buffaloes, AMH, Differences.

Abstract

In order to improve production, it is necessary to apply reproductive biotechnologies, including embryo transfer. Due to the management and physiology of the animals and the buffalo production system, the best system is the in vitro production of embryos (IVP). This work aims to compare the results of the (IVP) of cows (Bos indicus) and buffalo (Bubalus bubalis) from animals kept under the same conditions of feeding and handling. This study was conducted in an Argentinan commercial herd located in the province of Corrientes (-27.742859 latitude, -57.773611 longitude) that raise buffaloes and cattle, during the breeding season of 2018 (March-May). Twenty animals of each species were used. Antimullerian hormone (AMH) levels of each animal were determined using ELISA. Standardized protocols were used for oocyte aspiration, maturation, fertilization and culture of the embryos, frozen semen of a single proved bull was used in each species. Information about the number of follicles, oocytes, and embryos was recorded and analyzed individually and grouped by species. The normality of the data was evaluated with the D'Agostino and Shapiro-Wilk tests and the comparisons between species using the Mann Whitney and ANOVA tests. Values are shown as median and range. A p-value <0.05 was considered statistically significant. The AMH levels of the cows were 688.5 pg/ml (45.3-2394) and the buffaloes 73.8 pg/ml (14.8-262.5), p <0.001. Significant differences were found in the number of recovered oocytes 9 (0-23) cows vs. 4.5 (1-11) buffaloes (p> 0.05). There were no significant differences in the number of follicles and the quality of the oocytes. Significant differences were found in the number of oocytes cleaved 4 (0 -17) vs. 0.5 (0-4) and blastocysts/animal 1,5 (0-15) and 0,1 (0-2) l for cows and buffalos respectively. The number of blastocysts in relation to the number of oocytes cleaved did not show statistical significance. The differences in the levels of AMH and the marked differences in the IVP between buffaloes and cattle are confirmed, it is necessary to propose research proposals that explain the differences.

References

Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2016.

Baruselli PS, Mucciolo RG, Visintin JA, Viana WG, Arruda RP, Madureira EH, et al. Ovarian follicular dynamics during the estrous cycle in buffalo. Theriogenology 1997; 47: 1531-47. https://doi.org/10.1016/S0093-691X(97)00159-3 DOI: https://doi.org/10.1016/S0093-691X(97)00159-3

Gimenes LU, Carvalho NAT, Sá Filho MF, Vannucci FS, Torres-Júnior JRS, Ayres H, et al. Ultrasonographic and endocrine aspects of follicle deviation, and acquisition of ovulatory capacity in buffalo (Bubalus bubalis) heifers. Anim Reprod Sci 2011; 123: 175-9. https://doi.org/10.1016/j.anireprosci.2010.12.004 DOI: https://doi.org/10.1016/j.anireprosci.2010.12.004

Manik RS, Palta P, Singla SK, Sharma V. Folliculogenesis in buffalo (Bubalus bubalis): a review. Reprod Fertil Dev 2002; 14: 315-25. https://doi.org/10.1071/RD01126 DOI: https://doi.org/10.1071/RD01126

Van Ty L, Chupin D, Driancourt MA. Ovarian follicular populations in buffaloes and cows. Anim Reprod Sci 1989; 19: 171-8. https://doi.org/10.1016/0378-4320(89)90090-0 DOI: https://doi.org/10.1016/0378-4320(89)90090-0

Campanile G, Baruselli PS, Neglia G, Vecchio D, Gasparrini B, Gimenes LU, et al. Ovarian function in the buffalo and implications for embryo development and assisted reproduction. Anim Reprod Sci 2010. https://doi.org/10.1016/j.anireprosci.2010.03.012 DOI: https://doi.org/10.1016/j.anireprosci.2010.03.012

Rico Charlène, Drouilhet Laurence, Salvetti Pascal, Dalbiès-Tran Rozenn, Jarrier Peggy, Touzé Jean-Luc, Pillet Elodie, Ponsart Claire, Fabre Stéphane MD. Determination of anti-Müllerian hormone concentrations in blood as a tool to select Holstein donor cows for embryo production: from the laboratory to the farm. Reprod Fertil Dev 2012; 24: 932-44. https://doi.org/10.1071/RD11290 DOI: https://doi.org/10.1071/RD11290

Gasparrini B. In vitro embryo production in buffalo species: State of the art. Theriogenology 2002. https://doi.org/10.1016/S0093-691X(01)00669-0 DOI: https://doi.org/10.1016/S0093-691X(01)00669-0

Neglia G, Gasparrini B, Caracciolo di Brienza V, Di Palo R, Campanile G, Antonio Presicce G, et al. Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology 2003; 59: 1123-30. https://doi.org/10.1016/S0093-691X(02)01170-6 DOI: https://doi.org/10.1016/S0093-691X(02)01170-6

Gasparrini B, Sayoud H, Neglia G, De Matos DG, Donnay I, Zicarelli L. Glutathione synthesis during in vitro maturation of buffalo (Bubalus bubalis) oocytes: Effects of cysteamine on embryo development. Theriogenology 2003. https://doi.org/10.1016/S0093-691X(03)00098-0 DOI: https://doi.org/10.1016/S0093-691X(03)00098-0

Sá Filho MF, Carvalho NAT, Gimenes LU, Torres-Júnior JR, Nasser LFT, Tonhati H, et al. Effect of recombinant bovine somatotropin (bST) on follicular population and on in vitro buffalo embryo production. Anim Reprod Sci 2009. https://doi.org/10.1016/j.anireprosci.2008.06.008 DOI: https://doi.org/10.1016/j.anireprosci.2008.06.008

Gimenes LU, Ferraz ML, Araujo A, Fantinato Neto P, Chiarati MR, Mesquita LG, et al. 273 Ovum pickup at different times of a synchronized follicular wave did not affect IVP in bos indicus, bos taurus, or bubalus bubalis. Reprod Fertil Dev 2010. https://doi.org/10.1071/RDv22n1Ab273 DOI: https://doi.org/10.1071/RDv22n1Ab273

Felipe Gamarra P, Viviana Rendón V, Aldemar Chávez R, Leonardo Perez S, Cardona-Maya W, Jesús Berdugo G. Est-ablishing an in vitro production program for buffalo embryos (Bubalus bubalis) in Colombia. Rev MVZ Cordoba 2015. https://doi.org/10.21897/rmvz.80 DOI: https://doi.org/10.21897/rmvz.80

Pontes JHF, Melo Sterza FA, Basso AC, Ferreira CR, Sanches BV, Rubin KCP, et al. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors. Theriogenology 2011; 75: 1640-6. https://doi.org/10.1016/j.theriogenology.2010.12.026 DOI: https://doi.org/10.1016/j.theriogenology.2010.12.026

Konrad J, Clérico G, Garrido MJ, Taminelli G, Yuponi M, Yuponi R, et al. Ovum pick-up interval in buffalo (Bubalus bubalis) managed under wetland conditions in Argentina: Effect on follicular population, oocyte recovery, and in vitro embryo development. Anim Reprod Sci 2017. https://doi.org/10.1016/j.anireprosci.2017.06.004 DOI: https://doi.org/10.1016/j.anireprosci.2017.06.004

Di Francesco S, Boccia L, Campanile G, Di Palo R, Vecchio D, Neglia G, et al. The effect of season on oocyte quality and developmental competence in Italian Mediterranean buffaloes (Bubalus bubalis). Anim Reprod Sci 2011. https://doi.org/10.1016/j.anireprosci.2010.11.009 DOI: https://doi.org/10.1016/j.anireprosci.2010.11.009

Neglia G, Gasparrini B, Vecchio D, Boccia L, Varricchio E, Di Palo R, et al. Long term effect of Ovum Pick-up in buffalo species. Anim Reprod Sci 2011. https://doi.org/10.1016/j.anireprosci.2011.01.011 DOI: https://doi.org/10.1016/j.anireprosci.2011.01.011

Benjamin G. Brackett GO. Capacitation of Rabbit Spermatozoa in vitro No Title. Biol Reprod 1975; 12: 260-74. https://doi.org/10.1095/biolreprod12.2.260 DOI: https://doi.org/10.1095/biolreprod12.2.260

Gimenes LU, Ferraz ML, Fantinato-Neto P, Chiaratti MR, Mesquita LG, Sá Filho MF, et al. The interval between the emergence of pharmacologically synchronized ovarian follicular waves and ovum pickup does not significantly affect in vitro embryo production in Bos indicus, Bos taurus, and Bubalus bubalis. Theriogenology 2015; 83: 385-93. https://doi.org/10.1016/j.theriogenology.2014.09.030 DOI: https://doi.org/10.1016/j.theriogenology.2014.09.030

Baldrighi J m, Sá Filho MF, Batista EOS, Lopes RNVR, Visintin JA, Baruselli PS, et al. Anti-Mullerian hormone concentration and antral ovarian follicle population in Murrah heifers compared to Holstein and Gyr kept under the same management. Reprod Domest Anim 2014; 49: 1015-20. https://doi.org/10.1111/rda.12430 DOI: https://doi.org/10.1111/rda.12430

Viana JHM, Figueiredo ACS, Gonçalves RLR, Siqueira LGB. A historical perspective of embryo-related technologies in South America. Anim Reprod 2018. https://doi.org/10.21451/1984-3143-AR2018-0016 DOI: https://doi.org/10.21451/1984-3143-AR2018-0016

La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Artenisio AC, et al. Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod Update 2010; 16: 113-30. https://doi.org/10.1093/humupd/dmp036 DOI: https://doi.org/10.1093/humupd/dmp036

Hirayama H, Naito A, Fukuda S, Fujii T, Asada M, Inaba Y, et al. Long-term changes in plasma anti-Müllerian hormone concentration and the relationship with superovulatory response in Japanese Black cattle. J Reprod Dev 2017; 63: 95-100. https://doi.org/10.1262/jrd.2016-019 DOI: https://doi.org/10.1262/jrd.2016-019

Ghanem N, Jin JI, Kim SS, Choi BH, Lee KL, Ha AN, et al. The Anti-Mullerian Hormone Profile is Linked with the In vitro Embryo Production Capacity and Embryo Viability after Transfer but Cannot Predict Pregnancy Outcome 2016; 310: 301-10. https://doi.org/10.1111/rda.12681 DOI: https://doi.org/10.1111/rda.12681

Durlinger A, Visser J TA. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 2002; 124: 601-9. https://doi.org/10.1530/rep.0.1240601 DOI: https://doi.org/10.1530/rep.0.1240601

Gimenes, L. U., Fantinato Neto, P., Arango, J. S. P., Ayres, H., & Baruselli PS. Follicular dynamics of Bos indicus, Bos taurus and Bubalus bubalis heifers treated with norgestomet ear implant associated or not to injectable progesterone. Anim Reprod Sci 2009; 6: 256.

Alvarez P, Spicer LJ, Chase CC, Payton ME, Hamilton TD, Stewart RE, et al. Ovarian and endocrine characteristics during an estrous cycle in Angus, Brahman, and Senepol cows in a subtropical environment. J Anim Sci 2000. https://doi.org/10.2527/2000.7851291x DOI: https://doi.org/10.2527/2000.7851291x

Nuttinck F, Charpigny G, Mermillod P, Loosfelt H, Meduri G, Freret S, et al. Expression of components of the insulin-like growth factor system and gonadotropin receptors in bovine cumulus-oocyte complexes during oocyte maturation. Domest Anim Endocrinol 2004. https://doi.org/10.1016/j.domaniend.2004.03.003 DOI: https://doi.org/10.1016/j.domaniend.2004.03.003

Ferraz ML, Sá Filho MF, Batista EOS, Watanabe YF, Watanabe MR, Dayan A, et al. Paradoxical effects of bovine somatotropin treatment on the ovarian follicular population and in vitro embryo production of lactating buffalo donors submitted to ovum pick-up. Anim Reprod Sci 2015. https://doi.org/10.1016/j.anireprosci.2014.12.017 DOI: https://doi.org/10.1016/j.anireprosci.2014.12.017

Baruselli PS, Batista EOS, Vieira LM, Ferreira RM, Guerreiro BG, Bayeux BM, et al. Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages. Anim Reprod 2016. https://doi.org/10.21451/1984-3143-AR861 DOI: https://doi.org/10.21451/1984-3143-AR861

Mondadori RG, Luque MCA, Santin TR, Báo SN. Ultrastructural and morphometric characterization of buffalo (Bubalus bubalis) ovarian preantral follicles. Anim Reprod Sci 2007; 97: 323-33. https://doi.org/10.1016/j.anireprosci.2006.02.010 DOI: https://doi.org/10.1016/j.anireprosci.2006.02.010

Baruselli PS, Soares JG, Bayeux BM, Silva JCB, Mingoti RD, Carvalho NAT. Assisted reproductive technologies (ART) in water buffaloes. Anim Reprod 2018; 15: 971-83. https://doi.org/10.21451/1984-3143-AR2018-0043 DOI: https://doi.org/10.21451/1984-3143-AR2018-0043

Anwar M, Ullah N. Early development and location of embryos in the reproductive tract of Nili Ravi buffalo (Bubalus bubalis): A retrospective analysis. Theriogenology 1998. https://doi.org/10.1016/S0093-691X(98)00066-1 DOI: https://doi.org/10.1016/S0093-691X(98)00066-1

Galli C, Crotti G, Notari C, Turini P, Duchi R, Lazzari G. Embryo production by ovum pick up from live donors. Theriogenology 2001. https://doi.org/10.1016/S0093-691X(01)00486-1 DOI: https://doi.org/10.1016/S0093-691X(01)00486-1

Pawshe CH, Appa Rao KBC, Totey SM. Effect of insulin-like growth factor I and its interaction with gonadotropins on in vitro maturation and embryonic development, cell proliferation, and biosynthetic activity of cumulus-oocyte complexes and granulosa cells in buffalo. Mol Reprod Dev 1998. https://doi.org/10.1002/(SICI)1098-2795(199803)49:3<277::AID-MRD8>3.0.CO;2-L DOI: https://doi.org/10.1002/(SICI)1098-2795(199803)49:3<277::AID-MRD8>3.3.CO;2-0

Kumar, P., A. Verma, B. Roy, S. Rajput, S. Ojha, S. Anand, P., Yadav, J. Arora S, De SIG, and TKD. Effect of varying glucose concentrations during in vitro maturation and embryo culture on efficiency of in vitro embryo production in buffalo. Reprod Domest Anim 2012; 47: 269-73. https://doi.org/10.1111/j.1439-0531.2011.01849.x DOI: https://doi.org/10.1111/j.1439-0531.2011.01849.x

Nandi S, Ravindranatha BM, Gupta PSP, Raghu HM, Sarma P V. Developmental competence and post-thaw survivability of buffalo embryos produced in vitro: Effect of growth factors in oocyte maturation medium and of embryo culture system. Theriogenology 2003. https://doi.org/10.1016/S0093-691X(03)00148-1 DOI: https://doi.org/10.1016/S0093-691X(03)00148-1

Eswari S, Sai Kumar G, Sharma GT. Expression of mRNA encoding leukaemia inhibitory factor (LIF) and its receptor (LIFR??) in buffalo preimplantation embryos produced in vitro: Markers of successful embryo implantation. Zygote 2013. https://doi.org/10.1017/S0967199412000172 DOI: https://doi.org/10.1017/S0967199412000172

Boccia L, Rubessa M, De Blasi M, Di Francesco S, Albero G, Neglia G, and Gasparrini B. Hyaluronic Acid improves cryotolerance of buffalo (bubalus bubalis) in vitro-derived embryos. Reprod Fert Devel 2011; 24: 138. https://doi.org/10.1071/RDv24n1Ab52 DOI: https://doi.org/10.1071/RDv24n1Ab52

Boccia L, De Blasi M, Zullo G, Longobardi V, Vecchio D, and Gasparrini B. L-carnitine during in vitro culture enhances the cryotolerance of buffalo (bubalus). Reprod Fertil Dev 2012; 25: 214. https://doi.org/10.1071/RDv25n1Ab133 DOI: https://doi.org/10.1071/RDv25n1Ab133

Blondin P, Bousquet D, Twagiramungu H, Barnes F, Sirard M-A. Manipulation of follicular development to produce developmentally competent bovine oocytes. Biol Reprod 2002. https://doi.org/10.1095/biolreprod66.1.38 DOI: https://doi.org/10.1095/biolreprod66.1.38

Nivet AL, Bunel A, Labrecque R, Belanger J, Vigneault C, Blondin P, et al. FSH withdrawal improves developmental competence of oocytes in the bovine model. Reproduction 2012. https://doi.org/10.1530/REP-11-0391 DOI: https://doi.org/10.1530/REP-11-0391

Konrad JL, Berdugo JA, Yuponi R, Vallejos N, Ledesma M, Crudeli G, Sansinena M. Effect of a one-time, strategic donor FSH-treatment on oocyte and embryo production in a commercial buffalo IVP program. Anim Reprod 2018; 15: 1129.

Soares F, Carvalho NAT, Basso AC, Watanabe Y, Watanabe Y, Bayeux BM, Mingoti RD. Baruselli P. Superstimulation prior to ovum pick-up to improve in vitro embryo production in buffalo donors. Anim Reprod 2018; 15: 1153.

Campanile G, Neglia G, Gasparrini B, Galiero G, Prandi A, Di Palo R, et al. Embryonic mortality in buffaloes synchronized and mated by AI during the seasonal decline in reproductive function. Theriogenology 2005; 63: 2334-40. https://doi.org/10.1016/j.theriogenology.2004.10.012 DOI: https://doi.org/10.1016/j.theriogenology.2004.10.012

Campanile G, Neglia G, D’Occhio MJ. Embryonic and fetal mortality in river buffalo (Bubalus bubalis). Theriogenology 2016. https://doi.org/10.1016/j.theriogenology.2016.04.033 DOI: https://doi.org/10.1016/j.theriogenology.2016.04.033

Downloads

Published

2020-04-18

How to Cite

Berdugo, J. A. ., Tarazona-Morales, A. M. ., Echevererry, J. J. ., Konrad, J. L. ., Crudeli, G. A. ., & Lopéz-Herrera, A. . (2020). Differences in Parameters of an Embryo In Vitro Production Program between Cattle (Bos Indicus) and Buffaloes (Bubalus bubalis). Journal of Buffalo Science, 9, 29–37. https://doi.org/10.6000/1927-520X.2020.09.05

Issue

Section

Articles