River Buffalo Meat Production and Quality: Sustainability, Productivity, Nutritional and Sensory Properties

Authors

  • Isabel Guerrero-Legarreta Emeritus Professor-Universidad Autónoma Metropolitana, Iztapalapa Campus, (UAM-I), Department of Biotechnology, Food Science, 09340, Mexico City, Mexico
  • Fabio Napolitano Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
  • Rosy Cruz-Monterrosa Department of Food Science, Universidad Autónoma Metropolitana, Lerma campus (UAM-L), 52005, Lerma City, Mexico
  • Daniel Mota-Rojas Neurophysiology, Behavior, and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus (UAM-X), 04960, Mexico City, Mexico
  • Patricia Mora-Medina Livestock Science Department, Universidad Nacional Autónoma de México (UNAM), FESC, 54714, State of Mexico, Mexico
  • Efren Ramírez-Bribiesca Livestock Production, Colegio de Postgraduados, Montecillo, 56230, Texcoco, Mexico
  • Aldo Bertoni Neurophysiology, Behavior, and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus (UAM-X), 04960, Mexico City, Mexico
  • Jesus Berdugo-Gutiérrez Latin American Center for the Study of Buffalo, Colombia, National University of Colombia, Bogotá, 111321, Colombia
  • Ada Braghieri Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy

DOI:

https://doi.org/10.6000/1927-520X.2020.09.17

Keywords:

River buffalo, meat, rearing systems, sustainability, performance, nutritional quality, sensory properties.

Abstract

One of the most important challenges facing today’s society is feeding a growing world population. This review aims to examine the available information to assess the potential of river buffalo as a meat producer with a focus on the sustainability of the supply chain and on meat quality in terms of nutritional and sensory properties. Traditionally, buffalo meat came from old, culled animals in rural agricultural regions where animals were slaughtered at the end of their productive life as dairy or draught animals. Therefore, the meat had low quality. However, when younger animals are used, buffalo meat is generally well appreciated by consumers. Buffaloes can adapt to different production systems and convert poor-quality high fiber feedstuffs into high-quality products, including meat, with a lower degree of competition with human nutrition. In addition, although requiring more land, extensive production systems may have lower environmental impacts due to the low inputs used in the productive process and show higher levels of animal welfare. Although weight gains and dressing percentages are generally lower than in cattle, the meat is characterized by better nutritional properties (low fat and cholesterol contents, high-quality protein, and unsaturated fatty acids). In addition, the use of appropriate production systems might improve its sensory properties. Therefore, buffalo meat may be considered a good option to meet the increasing demand for food for human consumption.

References

FAO. The future of food and agriculture—Alternative pathways to 2050. Rome, Italy. 224 pp. License: 2018. CC BY-NC-SA 3.0 IGO

FAO. Sustainable Development Goals (SDG). End hunger, achieve food security, and improved nutrition, and promote sustainable agriculture. 2019. http://www.fao.org/sustainable-development-goals/news/detail-news/en/c/424259/

FAO. Global Livestock Environmental Assessment Model (GLEAM). GLEAM 2.0 Assessment of greenhouse gas emissions and mitigation potential. 2019. http://www.fao.org/ gleam/results/en/.

FAO. Water buffalo: An asset undervalued. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. Ed. 2000. p. 1-6.

FAOSTAT. Food and Agriculture Organization of the United Nations. 2014. http://faostat.fao.org/site/567/default.aspx #ancor.

Ingawale MV, Dhoble RL. Buffalo reproduction in India: An overview. Buffalo Bull 2004; 23: 10-14.

Zicarelli L. Current trends in buffalo milk production. J. Buffalo Sci 2020; 9: 121-132. https://doi.org/10.6000/1927-520X.2019.08.03.14 DOI: https://doi.org/10.6000/1927-520X.2020.09.14

FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. http://faostat.fao.org/site/567/default.aspx# ancor.

Wanapat M, Chanthakhoun V. Buffalo production for emerging market as a potential animal. Buffalo Bull 2015; 34: 169-80.

Aw-Hassan A, Shomo F, Iniguez L. Trends in small ruminant meat production-consumption gaps in West Asia and North Africa: implications for intra-regional trade. Outlook Agr 2010; 39: 41-7. DOI: https://doi.org/10.5367/000000010791170031

Zhang W, Naveena BM, Jo C, Sakata R, Zhou G, Banerjee R, et al. Technological demands of meat processing-an Asian perspective. Meat Sci 2017; 132: 35-44. https://doi.org/10.1016/j.meatsci.2017.05.008 DOI: https://doi.org/10.1016/j.meatsci.2017.05.008

FAO. Selected indicators of food and agriculture development in the Asia-Pacific Region (1999-2000). Publication 2001/17. FAO Regional Office for Asia and the Pacific; 2001. Bangkok, Thailand.

Napolitano F, Pacelli C, Grasso F, Braghieri A, De Rosa G. The behaviour and welfare of buffaloes (Bubalus bubalis) in modern dairy enterprises. Animal 2013; 7: 1704-13. https://doi.org/10.1017/s1751731113001109 DOI: https://doi.org/10.1017/S1751731113001109

Mora-Medina P, Berdugo-Gutiérrez J, Mota-Rojas D, Ruiz-Buitrago J, Nava AJ, Guerrero-Legarreta I. Behaviour and welfare of dairy buffaloes: pasture or confinement? J Buffalo Sci 2018a; 7: 43-48. DOI: https://doi.org/10.6000/1927-520X.2018.07.03.2

Mora-Medina P, Napolitano F, Mota-Rojas D, Berdugo-Gutiérrez J, Ruiz-Buitrago J, Guerrero-Legarreta I. Imprinting, sucking and allosucking behaviors in buffalo calves. J Buffalo Sci 2018; 7: 49-57. https://doi.org/10.6000/1927-520X.2018.07.03.3 DOI: https://doi.org/10.6000/1927-520X.2018.07.03.3

Guerrero-Legarreta I, Napolitano F, Mota-Rojas D, Cruz-Monterrosa R, Mora-Medina P, Berdugo-Gutiérrez J. The Water Buffalo: versatile, rustic and sustainable as a meat producer (In spanish). Agro Meat. Buenos Aires, Argentina 2019; Febrero: 1-10.

Bertoni A, Álvarez-Macias A, Mota-Rojas D. Productive performance of buffaloes and their development options in tropical regions. Soc Rur Prod Med Amb 2019; 19: 59-80.

Bertoni A, Napolitano F, Mota-Rojas D, Sabia E, Alvarez-Macias A, Mora-Medina P, et al. Similarities and differences between river buffaloes and cattle: health, physiological, behavioural and productivity aspects. J Buffalo Sci 2020; 9: 92-109. https://doi.org/10.6000/1927-520X.2020.09.12 DOI: https://doi.org/10.6000/1927-520X.2020.09.12

Badpa A, Ahmad S. Effect of incorporation of whey protein concentrate on quality characteristic of buffalo meat emulsion sausage. J Buffalo Sci 2014; 3: 48-54. https://doi.org/10.6000/1927-520X.2014.03.02.3 DOI: https://doi.org/10.6000/1927-520X.2014.03.02.3

De La Torre A, Gruffat D, Durand D, Micol D, Peyron A, Scislowski V, et al. Factors influencing proportion and composition of CLA in beef. Meat Sci 2006; 73: 258-68. https://doi.org/10.1016/j.meatsci.2005.11.025 DOI: https://doi.org/10.1016/j.meatsci.2005.11.025

Calabrò S, Cutrignelli MI, Gonzalez OJ, Chiofalo B, Grossi M, Tudisco R, et al. Meat quality of buffalo young bulls fed faba bean as protein source. Meat Sci 2014; 96: 591-6. https://doi.org/10.1016/j.meatsci.2013.08.014 DOI: https://doi.org/10.1016/j.meatsci.2013.08.014

Cifuni GF, Contò M, Amici A, Failla S. Physical and nutritional properties of buffalo meat finished on hay or maize silage-based diets. Anim Sci J 2014; 85: 405-10. https://doi.org/10.1111/asj.12152 DOI: https://doi.org/10.1111/asj.12152

Lambertz C, Panprasert P, Holtz W, Moors E, Jaturasitha S, Wicke M, et al. Carcass characteristics and meat quality of swamp buffaloes (Bubalus bubalis) fattened at different feeding intensities. Asian-Australasian J Anim Sci 2014; 27: 551-60. DOI: https://doi.org/10.5713/ajas.2013.13555

Nampanya S, Young J, Khounsy S, Bush R, Windsor P. Open access the food security challenge for the buffalo meat industry: perspectives from Lao PDR. J Buffalo Sci 2014; 3:38-47. https://doi.org/10.6000/1927-520X.2014.03.02.2 DOI: https://doi.org/10.6000/1927-520X.2014.03.02.2

FAO. The state of food and agriculture, Rome, Italy; 2009, 1-165, ISBN 978-92-5-106215-9.

Gerber PJ, Mottet A, Opio CI, Falcucci A, Teilhard F. Environmental impacts of beef production: Review of challenges and perspectives for durability. Meat Sci 2015; 109: 2-12. DOI: https://doi.org/10.1016/j.meatsci.2015.05.013

Ogino A, Sommart K, Subepang S, Mitsumori M, Hayashi K, Yamashita T, Tanaka Y. Environmental impacts of extensive and intensive beef production systems in Thailand evaluated by life cycle assessment. J Clean Prod 2016; 112: 22-31. DOI: https://doi.org/10.1016/j.jclepro.2015.08.110

De Vries M, de Boer IJM. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest Sci 2010; 28: 1-11. DOI: https://doi.org/10.1016/j.livsci.2009.11.007

Pelletier N, Pirog R, Rasmussen R, Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agric Syst 2010; 103: 380-389. DOI: https://doi.org/10.1016/j.agsy.2010.03.009

Bragaglio A, Napolitano F, Pacelli C, Pirlo G, Sabia E, Serrapica F, Serrapica M, Braghieri, A. Environmental impacts of Italian beef production: A comparison between different systems. J Clean Prod 2018; 172: 4033-4043 DOI: https://doi.org/10.1016/j.jclepro.2017.03.078

Dick M, Abreu da Silva M, Dewes H. Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil. J Clean Prod 2015; 96: 426-434. DOI: https://doi.org/10.1016/j.jclepro.2014.01.080

Ripoll-Bosch R, de Boer IJM, Bernués A, Vellinga TV. Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: A comparison of three contrasting Mediterranean systems. Agr Syst 2013; 116: 60-68 DOI: https://doi.org/10.1016/j.agsy.2012.11.002

Bragaglio A, Braghieri A, Pacelli C, Napolitano F. Environmental Impacts of Beef as Corrected for the Provision of Ecosystem Services. Sustainability 2020; 12: 3828. https://doi.org/10.3390/su12093828 DOI: https://doi.org/10.3390/su12093828

Wiedemann S, McGahan E, Caoilinn M, Yan MJ, Henry B, Thoma G, Ledgard, S. Environmental impacts and resource use of Australian beef and lamb exported to the USA determined using life cycle assessment. J Clean Prod 2015; 94: 67-75. DOI: https://doi.org/10.1016/j.jclepro.2015.01.073

Sabia E, Napolitano F, Claps S, De Rosa G, Barile VL, Braghieri A, et al. Environmental impact of dairy buffalo heifers kept on pasture or in confinement. Agr Syst 2018; 159: 42-9. https://doi.org/10.1016/j.jclepro.2018.04.158 DOI: https://doi.org/10.1016/j.agsy.2017.10.010

EIP-AGRI Focus Group Profitability of permanent grassland How to manage permanent grassland in a way that combines profitability, carbon sequestration, and biodiversity? Starting paper Koldo Osoro, 28 May 2014.

Lal R. Soil carbon sequestration impacts on global climate change and food security. Science 2004; 304: 1623-1627. DOI: https://doi.org/10.1126/science.1097396

Bernués A, Ruiz R, Olaizola A, Villalba D, Casasús I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest Sci 2011; 139: 44-57. DOI: https://doi.org/10.1016/j.livsci.2011.03.018

Hoogesteijn R, Hoogesteijn A. Conflicts between cattle ranching and large predators in Venezuela: Could use of water buffalo facilitate felid conservation? Oryx 2008; 42: 132-8. https://doi.org/10.1017/S0030605308001105 DOI: https://doi.org/10.1017/S0030605308001105

Singh AK, Devi R, Kumar Y, Kumar P, Upadhyay RC. Physiological changes and blood flow in Murrah buffaloes during summer and winter season. J Buffalo Sci 2014; 3: 63-9. https://doi.org/10.6000/1927-520X.2014.03.02.6 DOI: https://doi.org/10.6000/1927-520X.2014.03.02.6

Mota-Rojas D, De Rosa G, Mora-Medina P, Braghieri A, Guerrero-Legarreta I. Napolitano F. Invited review: Dairy buffalo behaviour and welfare from calving to milking. CAB Rev 2019; 14: 1-12. https://doi.org/10.1079/PAVSNNR201914035 DOI: https://doi.org/10.1079/PAVSNNR201914035

Borghese A. Buffalo livestock and products in Europe. Buffalo Bull 2013; 7: 47-73.

De Rosa G, Grasso F, Braghieri A, Bilancione A, Di Francia A, Napolitano F. Behavior and milk production of buffalo cows as affected by housing system. J Dairy Sci 2009; 92: 907-12. https://doi.org/10.3168/jds.2008-1157 DOI: https://doi.org/10.3168/jds.2008-1157

De Rosa G, Grasso F, Pacelli C, Napolitano F, Winckler C. The welfare of dairy buffalo. Ital J Anim Sci 2009; 8: 103-116. https://doi.org/10.4081/ijas.2009.s1.103 DOI: https://doi.org/10.4081/ijas.2009.s1.103

Nanda AS, Nakao T. Role of buffalo in the socio-economic development of rural Asia: Current status and future prospectus. Anim Sci J 2003; 74: 443-55. https://doi.org/10.1046/j.1344-3941.2003.00138.x DOI: https://doi.org/10.1046/j.1344-3941.2003.00138.x

Irurueta M, Cadoppi A, Langman L, Grigioni G Carduza F. Effect of aging on the characteristics of meat from water buffalo grown in the Delta del Paraná region of Argentina. Meat Sci 2008; 79: 529-33. https://doi.org/10.1016/j.meatsci.2007.12.010 DOI: https://doi.org/10.1016/j.meatsci.2007.12.010

Kandeepan G, Anjaneyulu ASR, Kondaiah N, Mendiratta SK, Lakshmanan V. Effect of age and gender on the processing characteristics of buffalo meat. Meat Sci 2009; 83: 10-14. https://doi.org/10.1016/j.meatsci.2009.03.003 DOI: https://doi.org/10.1016/j.meatsci.2009.03.003

Kandeepan G, Biswas S, Rajkumar RS. Buffalo as a potential food animal. Int J Livest Prod 2009; 1: 1-5.

Naveena BM, Kiran M. Buffalo meat quality, composition, and processing characteristics: Contribution to the global economy and nutritional security. Anim Front 2014; 4: 18-24. https://doi.org/10.2527/af.2014-0029 DOI: https://doi.org/10.2527/af.2014-0029

Kiran M, Naveena BM, Reddy KS, Shahikumar M, Reddy VR, Kulkarni VV, et al. Understanding tenderness variability and ageing changes in buffalo meat: biochemical, ultrastructural and proteome characterization. Animal 2016; 10: 1007-15. https://doi.org/10.1017/s1751731115002931 DOI: https://doi.org/10.1017/S1751731115002931

Andrighetto C, Jorge AM, Roça RDO, Rodrigues É, Bianchini W, Francisco CDL. Physical-chemical and sensory characteristics of meat from Murrah buffaloes slaughtered at different feedlot periods. Rev Bras Zootec 2008; 37: 2179-84. DOI: https://doi.org/10.1590/S1516-35982008001200015

Di Luccia A, Satriani A, Barone CA, Colatruglio P, Gigli S, Occidente M. Effect of dietary energy content on the intramuscular fat depots and triglyceride composition of river buffalo meat. Meat Sci 2003; 65: 1379-89. https://doi.org/10.1016/S0309-1740(03)00060-3 DOI: https://doi.org/10.1016/S0309-1740(03)00060-3

Tateo A, De Palo P, Quaglia NC, Centoducati P. Some qualitative and chromatic aspects of thawed buffalo (Bubalus bubalis) meat. Meat Sci 2007; 76: 352-8. https://doi.org/10.1016/j.meatsci.2006.12.003 DOI: https://doi.org/10.1016/j.meatsci.2006.12.003

Joele MRSP, Lourenço LFH, Lourenço-Júnior JB, Araújo GS, Budel JCC, Garcia AR. Meat quality of buffaloes finished in traditional or silvopastoral system in the Brazilian Eastern Amazon. J Sci Food Agric 2017; 97: 1740-45. https://doi.org/10.1002/jsfa.7922 DOI: https://doi.org/10.1002/jsfa.7922

Polaquini LEM, De Souza JG, Gebara JJ. Transformações técnico-podutivas e comerciais na pecuária de corte brasileira a partir da década de 90. Changes in the Brazilian beef cattle production and commercialization system. Rev Bras Zootec 2006; 35: 321-7. DOI: https://doi.org/10.1590/S1516-35982006000100040

Marques, CSS, Oaigen RP, de Moraes CM, dos Santos MAS, de Brito Lourenço Júnior J, Abel I. Segmentation of the buffalo meat consumer market in Belém, Pará, Brazil. Rev Bras Zootec 2016; 45: 336-44. https://doi.org/10.1590/S1806-92902016000600008 DOI: https://doi.org/10.1590/S1806-92902016000600008

Paleari MA, Beretta G, Colombo F, Foschini S, Bertolo G, Camisasca S. 2000. Buffalo meat as a salted and cured product. Meat Sci 54: 365-7. https://doi.org/10.1016/s0309-1740(99)00111-4 DOI: https://doi.org/10.1016/S0309-1740(99)00111-4

Soares GJD, Arêas JAG. Effect of electrical stimulation on post mortem biochemical characteristics and quality of Longissimus dorsi thoracis muscle from buffalo (Bubalus bubalis). Meat Sci 1995: 41: 369-79. https://doi.org/10.1016/0309-1740(94)00058-F DOI: https://doi.org/10.1016/0309-1740(94)00058-F

Masucci F, De Rosa G, Barone CMA, Napolitano F, Grasso F, Uzun P, et al. Effect of group size and maize silage dietary lesss on behaviour, health, carcass and meat quality of Mediterranean buffaloes. Animal 2015; 10: 531-8. https://doi.org/10.1017/s1751731115002359 DOI: https://doi.org/10.1017/S1751731115002359

Kennedy PM. Intake and digestion in swamp buffaloes and cattle. 4. Particle size and buoyancy in relation to voluntary intake. J Agric Sci 1995; 124: 277-87. DOI: https://doi.org/10.1017/S0021859600072944

Herrera-Pérez J, Velez-Regino L, Sánchez-Santillán P, Torres-Salado N, Rojas-García A, Maldonado-Peralta M. In vitro fermentation of fibrous substrates by water buffalo ruminal cellulolytic bacteria consortia. Rev. MVZ Cordoba 2018; 23: 6860-70. https://doi.org/10.21897/rmvz.1374 DOI: https://doi.org/10.21897/rmvz.1374

Lwin KO, Kondo M, Ban-Tokuda T, Lapitan RM, Del-Barrio A. Fujihara NT, et al. Ruminal fermentation and microbial ecology of buffaloes and cattle fed the same diet. Anim Sci J 2012; 83: 767-76. https://doi.org/10.1111/j.1740-0929.2012.01031.x DOI: https://doi.org/10.1111/j.1740-0929.2012.01031.x

Angulo RA, Noguera RR, Berdugo JA. The water buffalo (Bubalus bubalis): an efficient user of nutrients; aspects of fermentation and ruminal digestion. Livest Res Rural Develop 2005; 17: 67.

Vega RS, Del Barrio AN, Sangel PP, Katsube O, Canaria JC, Herrera JV, et al. Eating and rumination behaviour in Brahman grade cattle and crossbred water buffalo fed on high roughage diet. Anim Sci J 2010; 81: 574-9. DOI: https://doi.org/10.1111/j.1740-0929.2010.00784.x

Borghese A. Buffalo Production and research. FAO Ed. REU Technical Series, 2005; 67: 1-315. Roma (Italy).

Paleari MA, Camisasca S, Beretta G, Renon P, Tessuto L, Benedetti G, et al. Comparison of the physico-chemical characteristics of buffalo and bovine meat. Fleischwirt Intern 1997; 6: 11-13.

Li Q, Wang Y, Tan L, Leng J, Lu Q, Tian S, et al., Effects of age on slaughter performance and meat quality of Binlangjang male buffalo. Saudi J Biol Sci 2018; 25: 248-52. https://doi.org/10.1016/j.sjbs.2017.10.001 DOI: https://doi.org/10.1016/j.sjbs.2017.10.001

De Mendoza MG, Arenas de Moreno L, Huerta-Leidenz N, Uzcátegui-Bracho S, Beriain MJ, Smith GC. Occurrence of conjugated linoleic acid in longissimus dorsi muscle of water buffalo (Bubalus bubalis) and zebu-type cattle raised under savannah conditions. Meat Sci 2005; 69: 93-100. https://doi.org/10.1016/j.meatsci.2004.06.008 DOI: https://doi.org/10.1016/j.meatsci.2004.06.008

Anjaneyulu ASR, Thomas R, Kondaiah N. Technologies for value-added buffalo meat products. A review. Am J Food Technol 2007; 2: 104-14. https://doi.org/10.3923/ajft.2007.104.114 DOI: https://doi.org/10.3923/ajft.2007.104.114

Marino R, Albenzio M, Caroprese M, Napolitano F, Santillo A, Braghieri A. Effect of grazing and dietary protein on eating quality of Podolian beef. J Anim Sci 2011; 89: 3752-58. DOI: https://doi.org/10.2527/jas.2010-3699

Bureš D. Meat quality characteristics of beef from Charolais and Simmental bulls fed different diets. Conference paper 57th Annual Meeting of the European Association For Animal Production (EAAP). Turkey, Antalya 17th - 20th September. 2006; p. 371.

Wolf C, Messadène-Chelalib J, Ulbrichc SE, Kreuzer M, Giller K, Bérard J. Replacing sunflower oil by rumen-protected fish oil has only minor effects on the physico-chemical and sensory quality of Angus beef and beef patties. Meat Sci 2019; 154: 109-18. DOI: https://doi.org/10.1016/j.meatsci.2019.04.002

Bureš D, Bartoň L, Zahrádková R, Teslík V, Krejčová M. Chemical composition, sensory characteristics, and fatty acid profile of muscle from Aberdeen Angus, Charolais, Simmental, and Hereford bulls. Czech J Anim Sci 2006; 51: 279-84. DOI: https://doi.org/10.17221/3940-CJAS

Pesonen M, Honkavaara M, Huuskonen A. Effect of breed on production, carcass traits and meat quality of Aberdeen Angus, Limousin and Aberdeen Angus x Limousin bulls offered a grass silage-grain-based diet. Agr Food Sci 2012; 21: 361-9. DOI: https://doi.org/10.23986/afsci.6520

Brugiapaglia A, Lussiana C, Destefanis G. Fatty acid profile and cholesterol content of beef at retail of Piemontese, Limousin and Friesian breeds. Meat Sci 2014: 96: 568-73. https://doi.org/10.1016/j.meatsci.2013.08.012 DOI: https://doi.org/10.1016/j.meatsci.2013.08.012

Malau-Aduli AE, Siebert BD, Bottema CD, Pitchford WS. Breed comparison of the fatty acid composition of muscle phospholipids in Jersey and Limousine cattle. J Anim Sci 1998; 76: 766-73. DOI: https://doi.org/10.2527/1998.763766x

Huuskonen A, Jansson S, Honkavaara M, Tuomisto L, Kauppinen R, Joki-Tokola E. Meat color, fatty acid profile and carcass characteristics of Hereford bulls finished on grazed pasture or grass silage-based diets with similar concentrate allowance. Livest Sci 2010 131: 125-29. https://doi.org/10.1016/j.livsci.2010.02.019 DOI: https://doi.org/10.1016/j.livsci.2010.02.019

Marino R, Albenzio M, Braghieri A, Muscio A, Sevi A. Organic farming: effects of forage to concentrate ratio and ageing time on meat quality of Podolian young bulls. Livest Sci 2006; 102: 42-50. DOI: https://doi.org/10.1016/j.livsci.2005.11.004

Braghieri A, Cifuni GF, Girolami A, Riviezzi AM, Napolitano F. Chemical, physical and sensory properties of meat from pure and crossbred Podolian bulls at different ageing times. Meat Sci 2005; 69: 681-9. https://doi.org/10.1016/j.meatsci.2004.10.019 DOI: https://doi.org/10.1016/j.meatsci.2004.10.019

Lapitan RM, Del Barrio AN, Katsube O, Tokuda T, Orden EA, Robles AY, et al. Comparison of feed intake, digestibility and fattening performance of Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis). Anim Sci J 2004; 75: 549- 55. DOI: https://doi.org/10.1111/j.1740-0929.2004.00226.x

Lapitan RM, Del Barrio AN, Katsube O, Ban-Tokuda T, Orden EA, Robles AY, et al. Comparison of carcass and meat characteristics of Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis). Anim Sci J 2007; 78: 596-604. DOI: https://doi.org/10.1111/j.1740-0929.2007.00480.x

Kesava Rao V, Kowale BN. Changes in phospholipids of buffalo meat during processing and storage. Meat Sci 1991; 30: 115-29. https://doi.org/10.1016/0309-1740(91)90002-8 DOI: https://doi.org/10.1016/0309-1740(91)90002-8

Neath KE, Del Barrio AN, Lapitan RM, Herrera JRV, Fujihara T, Muroya S, et al. Difference in tenderness and pH decline between water buffalo meat and beef during post-mortem aging. Meat Sci 2007; 75: 499-505. https://doi.org/10.1016/j.meatsci.2006.08.016 DOI: https://doi.org/10.1016/j.meatsci.2006.08.016

Giordano G, Guarini P, Ferrari P, Biondi-Zoccai G, Schiavone B, Giordano A. Beneficial impact on cardiovascular risk profile of water buffalo meat consumption. Eur J Cin Nutr 2010; 64: 1000-1006. https://doi.org/10.1038/ejcn.2010.108 DOI: https://doi.org/10.1038/ejcn.2010.108

Juárez M, Failla S, Ficco A, Peña F, Avilés C, Polvillo O. Buffalo meat composition as affected by different cooking methods. Food Bioprod Process 2010; 88: 145-8. DOI: https://doi.org/10.1016/j.fbp.2009.05.001

Ziauddin S, Mahendrakar NS, Rao DN, Ramesh BS, Amla BL. Observations on some chemical and physical characteristics of buffalo meat. Meat Sci 1994; 37: 103-13. DOI: https://doi.org/10.1016/0309-1740(94)90148-1

Landi N, di Giuseppe AMA, Ragucci S, di Maro A, Free amino acid profile of Bubalus bubalis L. meat from the Campania region. Rev Bras Zootec 2016; 45: 627-31. DOI: https://doi.org/10.1590/S1806-92902016001000008

Zhang Y, Wang H, Gui L, Wang H, Mei C, Zhang Y, Xu H, Jia C, Zan L. Profile of muscle tissue gene expression specific to water buffalo: Comparison with domestic cattle by genome array. Gene 2016; 577(1): 24-31. https://doi.org/10.1016/j.gene.2015.11.015 DOI: https://doi.org/10.1016/j.gene.2015.11.015

Infascelli F, Roscia M, Buffardi F. Buffalo meat. Advertising Italy Editions 2009.

Tabilo G, Flores M, Fiszman, SM, Toldra F. Postmortem meat quality and sex a€ect textural properties and protein breakdown of dry-cured ham. Meat Sci 1999; 51: 255-260 DOI: https://doi.org/10.1016/S0309-1740(98)00125-9

Wilkinson C, Dijksterhuis GB, Minekusy M. From food structure to texture. Trends Food Sci Tech 2000; 11: 442-450. DOI: https://doi.org/10.1016/S0924-2244(01)00033-4

Egan AF, Ferguson DM, Thompson JM. Consumer sensory requirements for beef and their implications for the Australian beef industry. ‎Aust J Exp Agric 2001; 41: 855-9. DOI: https://doi.org/10.1071/EA00065

Baublits RT, Meullenet JF, Sawyer JT, Mehaffey JM, Saha A. Pump rate and cooked temperature effects on pork loin instrumental, sensory descriptive and consumer-rated characteristics. Meat Sci 2006; 72: 741-50. DOI: https://doi.org/10.1016/j.meatsci.2005.10.006

Hutchison CL, Mulley RC, Wiklund E, Flesch JS. Consumer evaluation of venison sensory quality: Effects of sex, body condition score and carcase suspension method. Meat Sci 2010; 86: 311-16. DOI: https://doi.org/10.1016/j.meatsci.2010.04.031

Belew JB, Brooks JC, McKenna DR, Savell JW. Warner-Bratzler shear evaluations of 40 bovine muscles. Meat Sci 2003; 64: 507-512 DOI: https://doi.org/10.1016/S0309-1740(02)00242-5

Brooks JC, Belew JB, Griffin DB, Gwartney BL, Hale DS, Henning WR, Johnson DD, Morgan JB, Parrish FC, Reagan JO, Savell J.W. National beef tenderness survey-1998. J Anim Sci 2000; 78: 1852-1860. DOI: https://doi.org/10.2527/2000.7871852x

Bhat ZF, Morton JD, Mason SL, Bekhit AED. Role of calpain system in meat tenderness: A review. Food Sci Hum Wellness 2018; 7: 196-204. https://doi.org/10.1016/j.fshw.2018.08.002 DOI: https://doi.org/10.1016/j.fshw.2018.08.002

Koomaraie M. Biochemical factors regulating the toughening and tenderization process of meat Meat Sci 1996; 43: S193. DOI: https://doi.org/10.1016/0309-1740(96)00065-4

Rajagopal K, Oommen GT. Myofibril Fragmentation Index as an Immediate Postmortem Predictor of Buffalo Meat Tenderness. J Food Process Pres 2015; 39: 1166-71. https://doi.org/10.1111/jfpp.12331 DOI: https://doi.org/10.1111/jfpp.12331

Andrighetto-Canozzi ME, Ávila Sphor L, McManus Pimentel CM, Jardim Barcellos JO, Candal Poli CHE, Bergmann GP, et al. Sensory evaluation of beef and buffalo extensively reared and its relationship to sociodemographic characteristics of consumers. Semin Cienc Agr 2016; 37: 1617-28. https://doi.org/10.5433/1679-0359.2016v37n3p1617 DOI: https://doi.org/10.5433/1679-0359.2016v37n3p1617

Downloads

Published

2020-07-13

How to Cite

Guerrero-Legarreta, I. ., Napolitano, F. ., Cruz-Monterrosa, R. ., Mota-Rojas, D. ., Mora-Medina, P. ., Ramírez-Bribiesca, E. ., Bertoni, A. ., Berdugo-Gutiérrez, J. ., & Braghieri, A. . (2020). River Buffalo Meat Production and Quality: Sustainability, Productivity, Nutritional and Sensory Properties. Journal of Buffalo Science, 9, 159–169. https://doi.org/10.6000/1927-520X.2020.09.17

Issue

Section

Articles

Most read articles by the same author(s)