Reversing Breast Cancer in a Premenopausal Woman: A Case for Phyto-Nutritional Therapy

Authors

  • Steve Yap DSY Wellness and Longevity Center, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.6000/1927-3037.2015.04.01.4

Keywords:

Breast cancer, nutritional therapy, dietary modification, nutraceuticals, apoptosis.

Abstract

Globally, breast cancer incidence increases at 1% to 2% annually. It is the number one cause of cancer death in women. Current literature implies that soy food intake is linked to decreased risk of breast cancer due to its rich isoflavones. On the other hand, intake of animal fat, red meat, organ meat and high-fat dairy products during premenopausal years may increase risk for this cancer, but no apparent risk has been established for fish or poultry intake. Monounsaturated fat and the improved ratio of omega-3 to omega-6 fatty acids have showed potential to reduce risk. On the other hand, high glycemic index diet but not glycemic load is associated with a significantly increased risk. Central rather than general obesity carries similar risk. Furthermore, lifestyle rather than genetic differences are widely implicated in breast cancer. A comprehensive phyto-nutritional therapy was adopted for treating a case involving stage IV breast cancer in a premenopausal woman, who was turned away by a hospital offering conventional treatment. The therapy involved designing and monitoring the implementation of dietary plans to achieve optimum health outcomes for the major abnormal metabolic blood/urine markers identified for this particular patient. Nutrient-dense food items with generous servings of a variety of spices and herbs, supplemented by vitamins, minerals and phyto-extracts was prescribed as part of the therapy. Many non-toxic dietary nutrients and phytonutrients are known cytotoxic agents promoting cancer regression via apoptosis pathways, which have yet to be fully understood. Conclusion: The complete remission of the malignancy initiated by this natural therapy would suggest that an advanced stage breast cancer is a metabolic disorder reversible by an evidence-based phyto-nutritional therapy. While not all cases of malignancy can possibly be completely reversed, the positive outcome achieved in partnership with the patient warrants further study involving larger number of women with similar level of malignancy.

References

Sarkar FH, Li Y. Cell signaling pathways altered by natural chemopreventive agents. Mutat Res 2004; 555: 53-64. http://dx.doi.org/10.1016/j.mrfmmm.2004.04.015

Holm LE, Callmer E, Hialmar ML, Lidbrink E, Nilsson B, et al. Dietary habits and prognostic factors in breast cancer. J Natl Cancer Inst 1989; 81: 1218-23. http://dx.doi.org/10.1093/jnci/81.16.1218

Willett WC, Hunter DJ, Stampfer MJ, Colditz G, Manson J, et al. Dietary fat and fiber in relation to risk of breast cancer: an 8-year follow-up. JAMA 1992; 21; 268(15): 2037-44. http://dx.doi.org/10.1001/jama.1992.03490150089030

Zhang CX, Ho SC, Cheng SZ, Chen YM, Fu JH, et al. Effect of dietary fiber intake on breast cancer risk according to estrogen and progesterone receptor status. Eur J Clin Nutr 2011; 65(8): 929-36. http://dx.doi.org/10.1038/ejcn.2011.57

Bagga D, Ashley JM, Geffrey SP, Wang HJ, Barnard RJ, et al. Effects of a very low fat, high fiber diet on serum hormones and menstrual function. Implications for breast cancer prevention. Cancer 1995; 76(12): 2491-6. http://dx.doi.org/10.1002/1097-0142(19951215)76:12<2491::AID-CNCR2820761213>3.0.CO;2-R

Cotterchio M, Boucher BA, Kreiger N, Mills CA, Thompson LU. Dietary phytoestrogen intake-lignans and isoflavones-and breast cancer risk (Canada). Cancer Causes Control 2008; 19(3): 259-72. http://dx.doi.org/10.1007/s10552-007-9089-2

Pan A, Demark-Wahnefried W, Ye X, Yu Z, Li H, et al. Effects of a flaxseed-derived lignan supplement on C-reactive protein, IL-6 and retinol-binding protein 4 in type 2 diabetic patients. Br J Nutr 2009; 101: 1145-9. http://dx.doi.org/10.1017/S0007114508061527

Pan A, Sun J, Chen Y, Ye X, Li H, et al. Effects of a flaxseed-derived lignan supplement in type 2 diabetic patients: a randomized, double-blind, cross-over trial. PLoS ONE 2007; 2: e1148. http://dx.doi.org/10.1371/journal.pone.0001148

Rock CL, Demark-Wahnefried W. Nutrition and survival after the diagnosis of breast cancer: a review of the evidence. J Clin Oncol 2002; 20(15): 3302-16. http://dx.doi.org/10.1200/JCO.2002.03.008

Yang PM, Tseng HH, Peng CW, Chen WS, Chiu SJ. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7associaited apoptosis and inhibition of autophagy. Int J Oncol 2012; 40(2): 469-78. http://dx.doi.org/10.3892/ijo.2011.1203

Fu B, Xue J, Li Z, Shi X, Jiang BH, Fang J. Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesis. Mol Cancer Ther 2007; 6: 220-6. http://dx.doi.org/10.1158/1535-7163.MCT-06-0526

Fang J, Zhou Q, Liu LZ, Xia C, Hu X, et al. Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis 2007; 28: 858-64. http://dx.doi.org/10.1093/carcin/bgl205

Hu XW, Meng D, Fang J. Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis 2008; 29: 2369-76. http://dx.doi.org/10.1093/carcin/bgn244

Zhang YF, Kang HB, Li BL, Zhang RM. Positive effects of soy isoflavone food on survival of breast cancer patients in China. Asian Pac J Cancer Prev 2012; 13(2): 479-82. http://dx.doi.org/10.7314/APJCP.2012.13.2.479

Wu AH, Yu MC, Tseng CC, Pike MC. Epidemiology of soy exposures and breast cancer risk. Br J Cancer 2008; 98(1): 9-14. http://dx.doi.org/10.1038/sj.bjc.6604145

Zhu YY, Zhou L, Jiao SC, Xu LZ. Relationship between soy food intake and breast cancer in China. Asian Pac J Cancer Prev 2011; 12(11): 2837-40.

Ziegler R, Hoover RN, Pike MC, Hildesheim A, Nomura A, et al. Migration patterns and breast cancer risk in Asian-American Women. JNCI 1993; 85(22): 1819-27. http://dx.doi.org/10.1093/jnci/85.22.1819

Wu AH, Ziegler RG, Horn-Ross PL, Nomura AM, West DW, et al. Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol Biomarkers Prev 1996; 5(11): 901-6.

Zhang C, Ho SC, Lin F, Cheng S, Fu J, et al. Soy product and isoflavone intake and breast cancer risk defined by hormone receptor status. Cancer Sci 2010; 101(2): 501-7. http://dx.doi.org/10.1111/j.1349-7006.2009.01376.x

Gardner CD, Chatterjee LM, Franke AA. Effects of isoflavone supplements vs. soy foods on blood concentrations of genistein and daidzein in adults. J Nutr Biochem 2009; 20(3): 227-34. http://dx.doi.org/10.1016/j.jnutbio.2008.02.008

Hanf V, Gonder U. Nutrition and primary prevention of breast cancer: foods, nutrients and breast cancer risk. Eur J Obstet Gynecol Reprod Biol 2005; 123(2): 139-49. http://dx.doi.org/10.1016/j.ejogrb.2005.05.011

Rahman KW, Li Y, Wang Z, Sarkar SH, Sarkar FH. Gene expression profiling revealed survivin as a target of 3,3'-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res 2006; 66(9): 4952-60. http://dx.doi.org/10.1158/0008-5472.CAN-05-3918

Sundar SN, Kerekatte V, Equinozio CN, Doan VB, Bjeldanes LF, et al. Indole-3-carbinol selectively uncouples expression and activity of estrogen receptor subtypes in human breast cancer cells. Mol Endocrinol 2006; 20(12): 3070-82. http://dx.doi.org/10.1210/me.2005-0263

Ahmad A, Kong D, Sarkar SH, Wang Z, Banerjee S, et al. Inactivation of uPA and its receptor uPAR by 3,3'-diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem 2009; 107(3): 516-27. http://dx.doi.org/10.1002/jcb.22152

Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 2008; 269(2): 291-304. http://dx.doi.org/10.1016/j.canlet.2008.04.018

Pledgie-Tracy A, Sobolewski MD, Davidson NE. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 2007; 6(3): 1013-21. http://dx.doi.org/10.1158/1535-7163.MCT-06-0494

Khoo HM, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 2001; 49(6): 3106-12. http://dx.doi.org/10.1021/jf000892m

Zhou Q, Yan B, Hu X, Li XB, Zhang J, et al. Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Mol Cancer Ther 2009; 8: 1684-91. http://dx.doi.org/10.1158/1535-7163.MCT-09-0191

Fang J, Zhou Q, Shi XL, Jiang BH. Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis 2007; 28: 713-23. http://dx.doi.org/10.1093/carcin/bgl189

Singhai R, Patil VW, Jaiswal SR, Patel SD, Tayade M, et al. E-Cadherin as a diagnostic biomarker in breast cancer. N Am J Med Sci 2011; 3(5): 227-33. http://dx.doi.org/10.4297/najms.2011.3227

Zhang SM. Role of vitamins in the risk, prevention, and treatment of breast cancer. Curr Opin Obstet Gynecol 2004; 16: 19-25. http://dx.doi.org/10.1097/00001703-200402000-00005

Zhang SM, Willett WC, Selhub J, Hunter DJ, Giovannucci EL, et al. Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J Natl Cancer Inst 2003; 95(5): 373-80. http://dx.doi.org/10.1093/jnci/95.5.373

Khoja KK, Shaf G, Hasan TN, Syed NA, Al-Khalifa AS, et al. Fenugreek, a naturally occurring edible spice, kills MCF-7 human breast cancer cells via an apoptotic pathway. Asian Pac J Cancer Prev 2011; 12(12): 3299-304.

Taylor WG, Elder JL, Chang PR, Richards KW. Microdetermination of diosgenin from fenugreek (Trigonella foenum-graecum) seeds. J Agri Food Chem 2000; 48: 5206-10. http://dx.doi.org/10.1021/jf000467t

Srinivasan S, Koduru S, Kumar R, Venguswamy G, Kyprianou N, et al. Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. Int J Cancer 2009; 125: 961-7. http://dx.doi.org/10.1002/ijc.24419

Oyagbemi AA, Saba AB, Azeez OI. Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Ind J Cancer 2010; 47: 53-8. http://dx.doi.org/10.4103/0019-509X.58860

Lee SH, Krisanapun C, Baek SJ. NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 2010; 31: 719-28. http://dx.doi.org/10.1093/carcin/bgq016

Yang KM, Pyo JO, Kim GY, Yu R, Han IS, et al. Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cellular & Molecular Biol Lett 2009; 14: 497-510. http://dx.doi.org/10.2478/s11658-009-0016-2

Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Ann Rev Nutri 2010; 30: 173-99. http://dx.doi.org/10.1146/annurev.nutr.012809.104755

Kundu JK, Na HK, Surh YJ. Ginger-derived phenolic substances with cancer preventive and therapeutic potential. Forum Nutr 2009; 61: 182-92. http://dx.doi.org/10.1159/000212750

Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, et al. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 2010; 127: 515-20. http://dx.doi.org/10.1016/j.jep.2009.10.004

Lee HS, Seo EY, Kang NE, Kim WK. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J Nutr Biochem 2008; 19(5): 313-9. http://dx.doi.org/10.1016/j.jnutbio.2007.05.008

Hoffman T. Ginger: an ancient remedy and modern miracle drug. Hawaii Medical J 2007; 66: 326-7.

Tamimi RM, Hankinson SE, Campos H, Spiegelman D, Zhang S, et al. Plasma carotenoids, retinol, and tocopherols and risk of breast cancer. Am J Epidemiol 2005; 161(2): 153-60. http://dx.doi.org/10.1093/aje/kwi030

Ingram D. Diet and subsequent survival in women with breast cancer. Br J Cancer 1994; 69(3): 592-5. http://dx.doi.org/10.1038/bjc.1994.108

Sato R, Helzlsouer KJ, Alberg AJ, Hoffman SC, Norkus EP, Comstock GW. Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2002; 11(5): 451-7.

Shannon J, King IB, Moshofsky R, Lampe JW, Gao DL, et al. Erythrocyte fatty acids and breast cancer risk: a case-control study in Shanghai, China. Am J Clin Nutr 2007; 85: 1090-7.

Kim J, Lim SY, Shin A, Sung MK, Ro J, et al. Fatty fish and fish omega-3 fatty acid intakes decrease the breast cancer risk: a case-control study. BMC Cancer 2009; 9: 216. http://dx.doi.org/10.1186/1471-2407-9-216

Gago-Dominguez M, Yuan JM, Sun CL, Lee HP, Yu MC. Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: The Singapore Chinese Health Study. Br J Cancer 2003; 89(9): 1686-92. http://dx.doi.org/10.1038/sj.bjc.6601340

Goodstine SL, Zheng T, Holford TR, Ward BA, Carter D, et al. Dietary (n-3)/(n-6) fatty acid ratio: possible relationship to premenopausal but not postmenopausal breast cancer risk in U.S. women. J Nutr 2003; 133(5): 1409-14.

Alfano CM, Imayama I, Neuhouser ML, Kiecolt-Glaser JK, Smith AW, et al. Fatigue, inflammation, and ω-3 and ω-6 fatty acid intake among breast cancer survivors. J Clin Oncol 2012; 30(12): 1280-7. http://dx.doi.org/10.1200/JCO.2011.36.4109

Serini S, Fasano E, Piccioni E, Cittadini AR, Calviello G. Differential anti-cancer effects of purified EPA and DHA and possible mechanisms involved. Curr Med Chem 2011; 18(26): 4065-75. http://dx.doi.org/10.2174/092986711796957310

Tisdale MJ. Cancer cachexia. Anticancer Drugs 1993; 4: 15-25. http://dx.doi.org/10.1097/00001813-199304000-00001

Fearon KC, Von Meyenfeldt MF, Moses AG, Van Geenen R, Roy A, et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 2003; 52(10): 1479-86. http://dx.doi.org/10.1136/gut.52.10.1479

Hansen MV, Madsen MT, Hageman I, Rasmussen LS, Bokmand S, et al. The effect of Melatonin on depression, anxiety, cognitive function and sleep disturbances in patients with breast cancer. The MELODY trial: protocol for a randomised, placebo-controlled, double-blinded trial. BMJ Open 2012; 2(1): e000647. http://dx.doi.org/10.1136/bmjopen-2011-000647

Korner E, Bertha G, Flooh E, Reinhart B, Wolf R, et al. Sleep-inducing effect of L-tryptophane. Eur Neurol 1986; 25 Suppl 2: 75-81. http://dx.doi.org/10.1159/000116087

Wurtman RJ, Anton-Tay F. The mammalian pineal as a neuroendocrine transducer. Recent Prog Horm Res 1969; 25: 493-522. http://dx.doi.org/10.1016/B978-0-12-571125-8.50014-4

Schernhammer ES, Giobbie-Hurder A, Gantman K, Savoie J, Scheib R, et al. A randomized controlled trial of oral melatonin supplementation and breast cancer biomarkers. Cancer Causes Control 2012; 23(4): 609-16. http://dx.doi.org/10.1007/s10552-012-9927-8

Malina C, Frigo S, Mathelin C. Sleep and breast cancer: Is there a link? Gynecol Obstet Fertil 2013; 41(2): 105-9. http://dx.doi.org/10.1016/j.gyobfe.2012.12.008

Lissoni P, Chilelli M, Villa S, Cerizza L, Tancini G. Five-year survival in metastatic non-small lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res 2003; 35: 12-5. http://dx.doi.org/10.1034/j.1600-079X.2003.00032.x

Sigounas G, Anagnostou A, Steiner M. dl-alpha-tocopherol induces apoptosis in erythroleukemia, prostate, and breast cancer cells. Nutr Cancer 1997; 28(1): 30-5. http://dx.doi.org/10.1080/01635589709514549

National Research Council Staff. Diet and health: Implications for reducing chronic disease risk. Washington, DC: National Academy of Education 1989: 376-9.

Salonen JT, Salonen R, Lappetelainen R, Maenpaa PH, Alfthan G, et al. Risk of cancer in relation to serum concentrations of selenium and vitamins A and E: matched case-control analysis of prospective data. Br Med J 1985; 290: 417-20. http://dx.doi.org/10.1136/bmj.290.6466.417

U.S. Department of Agriculture, Agricultural Research Service 2011. USDA National Nutrient Database for Standard Reference, Release 24. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed: Dec 8, 2014.

Schrauzer G. The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 2003: 47: 73-112. http://dx.doi.org/10.1016/S1043-4526(03)47002-2

Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial. Nutritional Prevention of Cancer Study. JAMA 1996; 76: 1957-63. http://dx.doi.org/10.1001/jama.1996.03540240035027

Weber C, Bysted A, Hłlmer G. The coenzyme Q10 content of the average Danish diet. Int J Vitam Nutr Res 1997; 67(2): 123-9

Sylvester PW, Russell M, Ip MM, Ip C. Comparative effects of different animal and vegetable fats fed before and during carcinogen administration on mammary tumorigenesis, sexual maturation, and endocrine function in rats. Cancer Res 1986; 46(2): 757-62.

Alshatwi AA. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J Exp Clin Cancer Res 2010; 29: 167. http://dx.doi.org/10.1186/1756-9966-29-167

Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, et al. Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs 2012; 23(4): 370-9. http://dx.doi.org/10.1097/CAD.0b013e32834f6ea8

Sundar SN, Marconett CN, Doan VB, Willoughby JA Sr, Firestone GL. Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells. Carcinogenesis 2008; 29(12): 2252-8. http://dx.doi.org/10.1093/carcin/bgn214

Alkhalaf M. Resveratrol-induced apoptosis is associated with activation of p53 and inhibition of protein translation in T47D human breast cancer cells. Pharmacology 2007; 80: 134-43. http://dx.doi.org/10.1159/000103253

Nguyen TH, Mustafa FB, Pervaiz S, Ng FS, Lim LH. ERK1/2 activation is required for resveratrol-induced apoptosis in MDA-MB-231 cells. Int J Oncol 2008; 33(1): 81-92. http://dx.doi.org/10.3892/ijo.33.1.81

Shin MH, Holmes MD, Hankinson SE, Wu K, Colditz GA, et al. Intake of dairy products, calcium, and vitamin D and risk of breast cancer. J Natl Cancer Inst 2002; 94(17): 1301. http://dx.doi.org/10.1093/jnci/94.17.1301

Rothkopf M. Fuel utilization in neoplastic disease: implications for the use of nutritional support in cancer patients. Nutr Supp 1990; 6: 14-6.

Collier B, Dossett LA, May AK, Diaz JJ. Glucose control and the inflammatory response. Nutr Clin Pract 2008; 23: 3-15. http://dx.doi.org/10.1177/011542650802300103

Murff HJ, Shu XO, Li H, Yang G, Wu X, et al. Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: a prospective cohort study. Int J Cancer 2011; 128(6): 1434-41. http://dx.doi.org/10.1002/ijc.25703

Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or eocasahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Nat Cancer Inst 1995; 87(8): 587-92. http://dx.doi.org/10.1093/jnci/87.8.587

Nissenson AR, Goodnough LT, Dubois RW. Anemia: not just an innocent bystander? Arch Intern Med 2003; 163(12): 1400-4. http://dx.doi.org/10.1001/archinte.163.12.1400

Sun L, Franco OH, Hu FB, Cai L, Yu Z, et al. Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly Chinese. J Clin Endocrinol Metab 2008; 93: 4690-6. http://dx.doi.org/10.1210/jc.2008-1159

Zijp IM, Korver O, Tijburg LB. Effect of tea and other dietary factors on iron absorption. Crit Rev Food Sci Nutr 2000; 40(5): 371-98. http://dx.doi.org/10.1080/10408690091189194

Weinstein RE, Bond BH, Silberberg BK. Tissue ferritin concentration in carcinoma of the breast. Cancer 1982; 50: 2406-9. http://dx.doi.org/10.1002/1097-0142(19821201)50:11<2406::AID-CNCR2820501127>3.0.CO;2-S

Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: past, present and future. Biochim Biophys Acta 2010; 1800(8): 760-9. http://dx.doi.org/10.1016/j.bbagen.2010.03.011

Torti SV and Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer 2013; 13(5): 342-355. http://dx.doi.org/10.1038/nrc3495

Saquib J, Rock CL, Natarajan L, Saquib N, Newman VA, et al. Dietary intake, supplement use, and survival among women diagnosed with early stage breast cancer. Nutr Cancer 2011; 63(3): 327-33. http://dx.doi.org/10.1080/01635581.2011.535957

Lockwood K, Moesgaard S, Folkers K. Partial and complete regression of breast cancer in patients in relation to dosage of coenzyme Q10. Biochem Biophys Res Commun 1994; 199(3): 1504-8. http://dx.doi.org/10.1006/bbrc.1994.1401

Lockwood K, Moesgaard S, Yamamoto T, Folkers K. Progress on therapy of breast cancer with vitamin Q10 and the regression of metastases. Biochem Biophys Res Commun 1995; 6; 212(1): 172-7. http://dx.doi.org/10.1006/bbrc.1995.1952

Premkumar VG, Yuvaraj S, Vijayasarathy K, Gangadaran SG, Sachdanandam P. Effect of coenzyme Q10, riboflavin and niacin on serum CEA and CA 15-3 levels in breast cancer patients undergoing tamoxifen therapy. Biol Pharm Bull. 2007; 30(2): 367-70. http://dx.doi.org/10.1248/bpb.30.367

Schaars CF, Stalenhoef AF. Effects of ubiquinone (coenzyme Q10) on myopathy in statin users. Curr Opin Lipidol 2008; 19(6): 553-7. http://dx.doi.org/10.1097/MOL.0b013e3283168ecd

Bischoff-Ferrari HA, Shao A, Dawson-Hughes B, Hathcock J, Giovannucci E, et al. Benefit-risk assessment of vitamin D supplementation. Osteoporos Int 2010; 21(7): 1121-32. http://dx.doi.org/10.1007/s00198-009-1119-3

Raimondi S, Johansson H, Maisonneuve P, Gandini S. Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 2009; 30(7): 1170-80. http://dx.doi.org/10.1093/carcin/bgp103

Chen P, Hu P, Xie D, Qin Y, Wang F, et al. Meta-analysis of vitamin D, calcium and the prevention of breast cancer. Breast Cancer Res Treat 2010; 121(2): 469-77. http://dx.doi.org/10.1007/s10549-009-0593-9

Kostner K, Denzer N, Muller CS, Klein R, Tilgen W, et al. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. Anticancer Res 2009 ; 29(9): 3511-36.

McCullough ML, Rodriguez C, Diver WR, Feigelson HS, Stevens VL. Dairy, calcium, and vitamin D intake and postmenopausal breast cancer risk in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev 2005; 14(12): 2898-904. http://dx.doi.org/10.1158/1055-9965.EPI-05-0611

Lu L, Yu Z, Pan A, Hu FB, Franco OH, et al. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. Diabetes Care 2009; 32: 1278-83. http://dx.doi.org/10.2337/dc09-0209

Natarajan K, Singh S, Grunberger D, and Aggarwal BB. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. PNAS 1996; 93 (17): 9090-5. http://dx.doi.org/10.1073/pnas.93.17.9090

Watabe M, Hishikawa K, Takayanagi A, Shimizu N, Nakaki T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. J Biol Chem 2004; 279: 6017-26. http://dx.doi.org/10.1074/jbc.M306040200

Vatansever SH, Sorkun K, Deliloglu I, Gurhan S, Ozdal-Kurt F, et al. Propolis from Turkey induces apoptosis through activating caspases in human breast carcinoma cell lines. Acta Histochem 2010; 112(6): 546-56. http://dx.doi.org/10.1016/j.acthis.2009.06.001

Watanabe MA, Amarante MK, Conti BJ, Sforcin JM. Cytotoxic constituents of propolis inducing anticancer effects: a review. J Pharm Pharmacol 2011; 63(11): 1378-86. http://dx.doi.org/10.1111/j.2042-7158.2011.01331.x

Sawicka D, Car H, Borawska MH, Niklinski J. The anticancer activity of propolis. Folia Histochem Cytobiol 2012; 50(1): 25-37. http://dx.doi.org/10.5603/FHC.2012.0004

Zhao Q, Zheng X, Jiang J, Zhou H, Hu P. Determination of ginsenoside Rg3 in human plasma and urine by high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr B Analyt Technol Biomed Life Sci 2010; 878: 2266-73. http://dx.doi.org/10.1016/j.jchromb.2010.06.019

Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011; 22(9): 799-806. http://dx.doi.org/10.1016/j.jnutbio.2010.11.001

Mai TT, Moon J, Song Y, Viet PQ, Phuc PV, et al. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett 2012 28; 321(2): 144-53. http://dx.doi.org/10.1016/j.canlet.2012.01.045

Chou CC, Yang JS, Lu HF, Ip SW, Lo C, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 2010; 33(8): 1181-91. http://dx.doi.org/10.1007/s12272-010-0808-y

Chien SY, Wu YC, Chung JG, Yang JS, Lu HF, et al. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol 2009; 28(8): 493-503. http://dx.doi.org/10.1177/0960327109107002

Nesaratnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, et al. Tocotrienol-rich fraction of palm oil affects gene expression in tumor resulting from MCF-7 cell inoculation in athymic mice. Lipids 2004; 39: 459-67. http://dx.doi.org/10.1007/s11745-004-1251-1

Radhika M, Ghoshal N, Chatterjee A. Comparison of effectiveness in antitumor activity between flavonoids and polyphenols of the methanolic extract of roots of Potentilla. fulgens in breast cancer cells. J Complement Integr Med. 2012; 9: Article 24. http://dx.doi.org/10.1515/1553-3840.1644

Rocha A, Wang L, Penichet M, Martins-Green M. Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. Breast Cancer Res Treat 2012; 136(3): 647-58. http://dx.doi.org/10.1007/s10549-012-2264-5

Jain M, Miller AB, To T. Premorbid diet and the prognosis of women with breast cancer. J Natl Cancer Inst 1994; 86(18): 1390-7. http://dx.doi.org/10.1093/jnci/86.18.1390

Rohan TE, Hiller JE, McMichael AJ. Dietary factors and survival from breast cancer. Nutr Cancer 1993; 20(2): 167-77. http://dx.doi.org/10.1080/01635589309514283

Bleys J, Navas-Acien A, Guallar E. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 2008; 168(4): 404-10. http://dx.doi.org/10.1001/archinternmed.2007.74

Schrauzer GN, White DA, Schneider CJ. Cancer mortalities correlation studies, IV. Associations with dietary intakes of certain trace elements, notably selenium antagonist. Bioinorg Chem 1977; 7: 35-56. http://dx.doi.org/10.1016/S0006-3061(00)80127-1

Nowak B, Chimielnicka J. Relationship of lead and cadmium to essential elements in hair, teeth and nails of environmentally exposed people. Ecotoxicol Environ Saf 2000; 46: 265-74. http://dx.doi.org/10.1006/eesa.2000.1921

Hayers RB. The carcinogenicity of metals in humans. Cancer Causes and Control 1997; 8: 371-85. http://dx.doi.org/10.1023/A:1018457305212

Alatise OI, Schrauzer GN. Lead exposure: a contributing cause of the current breast cancer epidemic in Nigerian women. Biol Trace Elem Res 2010; 136: 127-39. http://dx.doi.org/10.1007/s12011-010-8608-2

Schrauzer GN. Interactive effects of selenium and chromium on mammary tumor development and growth in MMTV-infected female mice and their relevance to human cancer. Biol Trace Elem Res 2006; 109: 281-92. http://dx.doi.org/10.1385/BTER:109:3:281

Lajous M, Lazcano-Ponce E, Hernandez-Avila M, Willett W, Romieu I. Folate, vitamin B6, and vitamin B12 intake and the risk of breast cancer among Mexican women. Cancer Epidemiol Biomarkers Prev 2006; 15(3): 443-8. http://dx.doi.org/10.1158/1055-9965.EPI-05-0532

Ronco AL, de Stefani E, Aune D, Boffetta P, Deneo-Pellegrini H, et al. Nutrient patterns and risk of breast cancer in Uruguay. Asian Pac J Cancer Prev 2010; 11(2): 519-24.

Nechuta S, Lu W, Chen Z, Zheng Y, Gu K, et al. Vitamin supplement use during breast cancer treatment and survival: a prospective cohort study. Cancer Epidemiol Biomarkers Prev 2011; 20(2): 262-71. http://dx.doi.org/10.1158/1055-9965.EPI-10-1072

Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: Potential role in suppression of inflammation and tumorigenesis. Exp Bio Med 2009; 234: 825-49. http://dx.doi.org/10.3181/0902-MR-78

Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A. Comparative effects of EGCG, green tea and a nutrient mixture on the patterns of MMP-2 and MMP-9 expression in cancer cell lines. Oncol Reports 2010; 24: 747-57. http://dx.doi.org/10.3892/or_00000917

Park IJ, Lee YK, Hwang JT, Kwon DY, Ho J, et al. Green tea catechin controls apoptosis in colon cancer cells by attenuation of H2O2-stimulated COX-2 expression via the AMPK signaling pathway at low-dose H2O2. Ann NY Acad Sci 2009; 1171: 538-44. http://dx.doi.org/10.1111/j.1749-6632.2009.04698.x

Kunnumakkara AB, Diagaradjane P, Anand P, Harikumar KB, Deorukhkar A, et al. Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. Int J Cancer 2009; 125: 2187-97. http://dx.doi.org/10.1002/ijc.24593

Yance DR, Sagar SM. Targeting angiogenesis with integrative cancer therapies. Integr Cancer Therapies 2006; 5: 9-29. http://dx.doi.org/10.1177/1534735405285562

Wargovich MJ, Morris J, Brown V, Ellis J, Logothetis B, et al. Nutraceutical use in late-stage cancer. Cancer Metastasis Rev 2010; 29(3): 503-10. http://dx.doi.org/10.1007/s10555-010-9240-5

Park CH, Hahm ER, Park S, Kim HK, Yang CH. The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett 2005; 579(13): 2965-71. http://dx.doi.org/10.1016/j.febslet.2005.04.013

Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, et al. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 2002; 98(2): 234-40. http://dx.doi.org/10.1002/ijc.10183

Kamat AM, Tharakan ST, Sung B, Aggarwal BB. Curcumin potentiates the antitumor effects of Bacillus Calmette-Guerin against bladder cancer through the downregulation of NF-kappaB and upregulation of TRAIL receptors. Cancer Research 2009; 69: 8958-66. http://dx.doi.org/10.1158/0008-5472.CAN-09-2045

Kang HJ, Lee SH, Price JE, Kim LS. Curcumin suppresses the paclitaxel-induced nuclear factor-kappa beta in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J 2009; 15: 223-9. http://dx.doi.org/10.1111/j.1524-4741.2009.00709.x

Sandur SK, Deorukhkar A, Pandey MK, Pabon AM, Shentu S, et al. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity. Int J Rad Oncol, Biol, Physics 2009; 75: 534-42. http://dx.doi.org/10.1016/j.ijrobp.2009.06.034

Lin SS, Lai KC, Hsu SC, Yang JS, Kuo CL, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and vascular endothelial growth factor (VEGF) Cancer Lett 2009; 285: 127-33. http://dx.doi.org/10.1016/j.canlet.2009.04.037

Kakarala M, Brenner D, Korkaya H, Cheng C, Tazi K, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 2010; 122: 777-85. http://dx.doi.org/10.1007/s10549-009-0612-x

Jiao Y, Wilkinson IV, Di XM, Wang W, Hatcher H et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 2009; 113: 462-469. http://dx.doi.org/10.1182/blood-2008-05-155952

Guha P, Dey A, Sarkar B, Dhyani MV, Chattopadhyay S, et al. Improved antiulcer and anticancer properties of a trans-resveratrol analog in mice. J Pharmacol Exp Ther 2009; 328: 829-38. http://dx.doi.org/10.1124/jpet.108.145334

Lee HS, Ha AW and Kim WK. Effect of resveratrol on the metastasis of 4T1 mouse breast cancer cells in vitro and in vivo. Nutr Res Pract 2012; 6(4): 294-300. http://dx.doi.org/10.4162/nrp.2012.6.4.294

Uchiyama T, Toda K, Takahashi S. Resveratrol inhibits angiogenic response of cultured endothelial F-2 cells to vascular endothelial growth factor, but not to basic fibroblast growth factor. Biol & Pharm Bull 2010; 33: 1095-100. http://dx.doi.org/10.1248/bpb.33.1095

Boehm K, Borrelli F, Ernst E, Habacher G, Hung SK, et al. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Revs 2009: CD005004. http://dx.doi.org/10.1002/14651858.CD005004.pub2

Sagar SM, Yance D, Wong RK. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 2. Curr Oncol 2006; 13: 14-26.

Khan N, Adhami VM, Mukhtar H. Apoptosis by dietary agents for prevention and treatment of cancer. Biochem Pharmacol 2008; 76: 1333-9. http://dx.doi.org/10.1016/j.bcp.2008.07.015

Surh YJ. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 1999; 428(1-2): 305-27. http://dx.doi.org/10.1016/S1383-5742(99)00057-5

Kato K, Long NK, Makita H, Toida M, Yamashita T, et al. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 2008; 99: 647-54. http://dx.doi.org/10.1038/sj.bjc.6604521

Shankar S, Ganapathy S, Hingorani SR, Srivastava RK. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers Biosci 2008; 13: 440-52. http://dx.doi.org/10.2741/2691

Tang Y, Zhao DY, Elliott S, Zhao W, Curiel TJ, et al. Epigallocatechin-3 gallate induces growth inhibition and apoptosis in human breast cancer cells through survivin suppression. Int J Oncol 2007; 31: 705-11. [144] Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 2005; 24: 7482-92. http://dx.doi.org/10.1038/sj.onc.1209088

Pan MH, Lin CC, Lin JK, Chen WJ. Tea polyphenol (−)-epigallocatechin 3-gallate suppresses heregulin-beta1-induced fatty acid synthase expression in human breast cancer cells by inhibiting phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase cascade signaling. J Agric Food Chem 2007; 55: 5030-7. http://dx.doi.org/10.1021/jf070316r

Sebastian RS, Cleveland LE, Goldman JD, Moshfegh AJ. Older adults who use vitamin/mineral supplements differ from nonusers in nutrient intake adequacy and dietary attitudes. J Am Diet Assoc 2007; 107(8): 1322-32. http://dx.doi.org/10.1016/j.jada.2007.05.010

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40. http://dx.doi.org/10.1016/j.cbi.2005.12.009

Rock CL, Newman VA, Neuhouser ML, Major J, Barnett MJ. Antioxidant supplement use in cancer survivors and the general population. J Nutr 2004; 134: 3194-5.

Newman V, Rock CL, Faerber S, Flatt SW, Wright FA, et al. Dietary supplement use by women at risk for breast cancer recurrence. The Women's Healthy Eating and Living Study Group. J Am Diet Assoc 1998; 98(3): 285-92. http://dx.doi.org/10.1016/S0002-8223(98)00068-6

Miller MF, Bellizzi KM, Sufian M, Ambs AH, Goldstein MS, et al. Dietary supplement use in individuals living with cancer and other chronic conditions: a population-based study. J Am Diet Assoc 2008; 108(3): 483-94. http://dx.doi.org/10.1016/j.jada.2007.12.005

Larsson SC, Akesson A, Bergkvist L, Wolk A. Multivitamin use and breast cancer incidence in a prospective cohort of Swedish women. Am J Clin Nutr 2010; 91(5): 1268-72. http://dx.doi.org/10.3945/ajcn.2009.28837

Zhang S, Hunter DJ, Forman MR, Rosner BA, Speizer FE, et al. Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. J Natl Cancer Inst 1999; 91(6): 547-56. http://dx.doi.org/10.1093/jnci/91.6.547

Greenlee H, Kwan ML, Kushi LH, Song J, Castillo A, et al. Antioxidant supplement use after breast cancer diagnosis and mortality in the Life After Cancer Epidemiology (LACE) cohort. Cancer. 2012; 118(8): 2048-58. http://dx.doi.org/10.1002/cncr.26526

Fink BN, Gaudet MM, Britton JA, Abrahamson PE, Teitelbaum SL, et al. Fruits, vegetables, and micronutrient intake in relation to breast cancer survival. Breast Cancer Res Treat 2006; 98(2): 199-208. http://dx.doi.org/10.1007/s10549-005-9150-3

Fleischauer AT, Simonsen N, Arab L. Antioxidant supplements and risk of breast cancer recurrence and breast cancer-related mortality among postmenopausal women. Nutr Cancer 2003; 46(1): 15-22. http://dx.doi.org/10.1207/S15327914NC4601_02

Holmes MD, Stampfer MJ, Colditz GA, Rosner B, Hunter DJ, et al. Dietary factors and the survival of women with breast carcinoma. Cancer 1999; 86(5): 826-35. http://dx.doi.org/10.1002/(SICI)1097-0142(19990901)86:5<826::AID-CNCR19>3.0.CO;2-0

Saxe GA, Rock CL, Wicha MS, Schottenfeld D. Diet and risk for breast cancer recurrence and survival. Breast Cancer Res Treat 1999; 53(3): 241-53. http://dx.doi.org/10.1023/A:1006190820231

Neuhouser ML, Wassertheil-Smoller S, Thomson C, Aragaki A, Anderson GL, et al. Multivitamin use and risk of cancer and cardiovascular disease in the Women’s Health Initiative cohorts. Arch Intern Med 2009; 169: 294-304. http://dx.doi.org/10.1001/archinternmed.2008.540

Feigelson HS, Jonas CR, Robertson AS, McCullough ML, Thun MJ, et al. Alcohol, folate, methionine, and risk of incident breast cancer in the American Cancer Society Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev 2003; 12: 161-4.

Ishitani K, Lin J, Manson JE, Buring JE, Zhang SM. A prospective study of multivitamin supplement use and risk of breast cancer. Am J Epidemiol 2008; 167: 1197-206. http://dx.doi.org/10.1093/aje/kwn027

Sellers TA, Vierkant RA, Cerhan JR, Gapstur SM, Vachon CM, et al. Interaction of dietary folate intake, alcohol, and risk of hormone receptor-defined breast cancer in a prospective study of postmenopausal women. Cancer Epidemiol Biomarkers Prev 2002; 11: 1104-7.

Maruti SS, Ulrich CM, White E. Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr 2009; 89: 624-33. http://dx.doi.org/10.3945/ajcn.2008.26568

Ulrich CM. Folate and cancer prevention: a closer look at a complex picture. Am J Clin Nutr 2007; 86: 271-3.

Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Fabianowska-Majewska K. Folic acid enforces DNA methylation-mediated transcriptional silencing of PTEN, APC and RARbeta2 tumour suppressor genes in breast cancer. Biochem Biophys Res Commun 2013; 430(2): 623-8. http://dx.doi.org/10.1016/j.bbrc.2012.11.103

Pierce JP, Natarajan L, Caan BJ, Parker BA, Greenberg ER, et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women's Healthy Eating and Living (WHEL) randomized trial. JAMA 2007; 298(3): 289-98. http://dx.doi.org/10.1001/jama.298.3.289

Chaves MR, Boleo-Tome C, Monteiro-Grillo I, Camilo M and Ravasco P. The Diversity of Nutritional Status in Cancer: New Insights. Oncologist 2010; 15(5): 523-30. http://dx.doi.org/10.1634/theoncologist.2009-0283

Van Cutsem E, Arends J. The causes and consequences of cancer-associated malnutrition. Eur J Oncol Nurs 2005; 9 Suppl 2: S51-63. http://dx.doi.org/10.1016/j.ejon.2005.09.007

Verreault R, Risson J, Deschenes L, Ward F, Meyer F, et al. Dietary fat in relation to prognostic indicators in breast cancer. J. Natl Cancer Inst 1988: 80: 819-25. http://dx.doi.org/10.1093/jnci/80.11.819

Ingram DM, Robert A, Nottage RM. Host factors and breast cancer growth characteristics. Eur. J. Cancer 1992: 28A: 1153-61. http://dx.doi.org/10.1016/0959-8049(92)90477-J

Yan C, Xu L, Yong L, Dong X, Jing F, et al. Nutrition-related diseases, including type 2 diabetes, metabolic syndrome, obesity, cardiovascular diseases, and many types of cancers. Adv Nutr 2011; 2(5): 428-39. http://dx.doi.org/10.3945/an.111.000703

Isenring E, Bauer J, Capra S. The scored Patient-generated Subjective Global Assessment (PG-SGA) and its association with quality of life in ambulatory patients receiving radiotherapy. Eur J Clin Nutr 2003; 57: 305-9. http://dx.doi.org/10.1038/sj.ejcn.1601552

Tong H, Isenring E, Yates P. The prevalence of nutrition impact symptoms and their relationship to quality of life and clinical outcomes in medical oncology patients. Support Care Cancer 2009; 17: 83-90. http://dx.doi.org/10.1007/s00520-008-0472-7

Bauer JD, Capra S, Ferguson M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur J Clin Nutr 2002; 56: 779-85. http://dx.doi.org/10.1038/sj.ejcn.1601412

Trabal J, Leyes P, Forga MT, Hervas S. Quality of life, dietary intake and nutritional status assessment in hospital admitted cancer patients. Nutr Hosp 2006; 21: 505-10.

Marin Caro MM, Laviano A, Pichard C. Nutritional intervention and quality of life in adult oncology patients. Clin Nutr 2007; 26: 289-301. http://dx.doi.org/10.1016/j.clnu.2007.01.005

Isenring EA, Bauer JD, Capra S. Nutrition support using the American Dietetic Association medical nutrition therapy protocol for radiation oncology patients improves dietary intake compared with standard practice. J Am Diet Assoc 2007; 107: 404-12. http://dx.doi.org/10.1016/j.jada.2006.12.007

Bauer JD, Capra S. Nutrition intervention improves outcomes in patients with cancer cachexia receiving chemotherapy: a pilot study. Supp Care Cancer 2005; 13: 270-4. http://dx.doi.org/10.1007/s00520-004-0746-7

Ravasco P, Monteiro Grillo I, Marques Vidal P, Camilo M. Nutritional deterioration in cancer: the role of disease and diet. Clin Oncol 2003; 15: 443-50. http://dx.doi.org/10.1016/S0936-6555(03)00155-9

Ravasco P, Monteiro-Grillo I, Vidal PM, Camilo ME. Cancer: disease and nutrition are key determinants of patients' quality of life. Support Care Cancer 2004; 12: 246-52. http://dx.doi.org/10.1007/s00520-003-0568-z

Gil KM, Gibbons HE, Jenison EL, Hopkins MP, von Gruenigen VE. Baseline characteristics influencing quality of life in women undergoing gynecologic oncology surgery. Health Qual Life Outcomes 2007; 5: 25. http://dx.doi.org/10.1186/1477-7525-5-25

Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-57. http://dx.doi.org/10.1038/bjc.1972.33

Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther 2001; 92(1): 57-70. http://dx.doi.org/10.1016/S0163-7258(01)00159-0

Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal 2008; 10: 475-510. http://dx.doi.org/10.1089/ars.2007.1740

Sen S, D’Incalci M. Biochemical events and relevance to cancer chemotherapy. FEBS Lett, 1992; 307, 122-7. http://dx.doi.org/10.1016/0014-5793(92)80914-3

Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003; 3: 768-80. http://dx.doi.org/10.1038/nrc1189

Foster FM, Owens TW, Tanianis-Hughes J, Clarke RB, Brenan K et al. Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res 2009; 11(3): R41. http://dx.doi.org/10.1186/bcr2328

Coughlin SS, Ekwueme DU. Breast cancer as a global health concern. Cancer Epidemiol. 2009; 33(5): 315. http://dx.doi.org/10.1016/j.canep.2009.10.003

World Cancer Research Fund, American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC: Am Inst for Cancer Research; 2007.p290

Primic-Zakelj M. Screening mammography for early detection of breast cancer. Ann Oncol 1999; 10 Suppl 6: 121-7. http://dx.doi.org/10.1093/annonc/10.suppl_6.S121

Health Quality Ontario. Screening mammography for women aged 40 to 49 years at average risk for breast cancer: an evidence-based analysis. Ont Health Technol Assess Ser 2007; 7(1): 1-32.

Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast tissues. Phys Med Biol 1987; 32(6): 675-95. http://dx.doi.org/10.1088/0031-9155/32/6/002

Wolfe JN. Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 1976; 37(5): 2486-92. http://dx.doi.org/10.1002/1097-0142(197605)37:5<2486::AID-CNCR2820370542>3.0.CO;2-8

Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. The quantitative analysis of mammographic densities. Phys Med Biol 1994; 39(10): 1629-38. http://dx.doi.org/10.1088/0031-9155/39/10/008

Boyd F, Martin LJ, Bronskill M, Yaffe MJ, Duric N et al. Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst 2010; 102(16): 1224-37. http://dx.doi.org/10.1093/jnci/djq239

Boyd NF, Guo H, Martin LJ, Sun L, Stone J, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007; 356(3): 227-36. http://dx.doi.org/10.1056/NEJMoa062790

Boyd NF, Martin LJ, Rommens JM, Paterson AD, Minkin S, et al. Mammographic density: a heritable risk factor for breast cancer. Methods Mol Biol 2009; 472: 343-60. http://dx.doi.org/10.1007/978-1-60327-492-0_15

World Health Organization. Consultation on Obesity. Geneva: WHO; 1998.

Ottery F. Definition of standardised nutritional assessment and interventional pathways in oncology. Nutrition 1996; 12: 15-9. http://dx.doi.org/10.1016/0899-9007(95)00067-4

Norman K, Stobaus N, Zocher D, Bosy-Westphal A, Szramek A, et al. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am J Clin Nutr 2010; 92: 612-9. http://dx.doi.org/10.3945/ajcn.2010.29215

Han SN, Lotgerink A, Mhallen-Gziri M, van Calsteren K, Hanssens M et al. Physiologic variations of serum tumor markers in gynecological malignancies during pregnancy: a systematic review. BMC Med 2012; 10: 86. http://dx.doi.org/10.1186/1741-7015-10-86

Schmidt-Rhode P, Schulz KD, Sturm G, Raab-Frick A, Prinz H. CA 15.3 as a tumour marker in breast cancer. Int J Biol Markers 1987; 2(3): 135-42.

Colomer R, Ruibal A, Navarro M, Encabo G, Sole LA, et al. Circulating CA 15.3 levels in breast cancer: our present experience. Int J Biol Markers 1986; 1(2): 89-92.

Barak V, Carlin D, Sulkes A, Treves A, Biran S. CA15-3 serum levels in breast cancer and other malignancies--correlation with clinical course. Isr J Med Sci. 1988; 24(9-10): 623-7.

Hayes DF, Zurawski VR Jr, Kufe DW. Comparison of circulating CA15-3 and carcinoembryonic antigen levels in patients with breast cancer. J Clin Oncol 1986; 4(10): 1542-50.

Tondini C, Hayes DF, Gelman R, Henderson IC, Kufe DW. Comparison of CA15-3 and carcinoembryonic antigen in monitoring the clinical course of patients with metastatic breast cancer. Cancer Res 1988; 48(14): 4107-12.

Pectasides D, Pavlidis N, Gogou L, Antoniou F, Nicolaides C, et al. Clinical value of CA 15-3, mucin-like carcinoma-associated antigen, tumor polypeptide antigen, and carcinoembryonic antigen in monitoring early breast cancer patients. Am J Clin Oncol 1996; 19(5): 459-64. http://dx.doi.org/10.1097/00000421-199610000-00007

Frenette PS, Thirlwell MP, Trudeau M, Thomson DM, Joseph L, et al. The diagnostic value of CA 27-29, CA 15-3, mucin-like carcinoma antigen, carcinoembryonic antigen and CA 19-9 in breast and gastrointestinal malignancies. Tumour Biol. 1994; 15(5): 247-54. http://dx.doi.org/10.1159/000217898

Piccinini L, Borella P, Bargellini A, Medici IC, Zoboli A. A case-control study on selenium, zinc, and copper in plasma and hair of subjects affected by breast and lung cancer. Biol Trace Elem Res 1996; 51: 23-30. http://dx.doi.org/10.1007/BF02790144

Kilic E, Ozturk S, Demiroglu A, Yilmaz Z, Yildaz Z, et al. Analysis of element content in scalp hair of healthy people and breast cancer patients with SEM/EDX method. J NZ Med Assoc 2004; 117: 1-3

Yang RJ, Huang LH, Shieh YS, Chung UL, Huang CS, et al. Motivations and reasons for women attending a breast self-examination training program: A qualitative study. BMC Womens Health 2010; 10: 23. http://dx.doi.org/10.1186/1472-6874-10-23

Downloads

Published

2015-04-08

How to Cite

Yap, S. (2015). Reversing Breast Cancer in a Premenopausal Woman: A Case for Phyto-Nutritional Therapy. International Journal of Biotechnology for Wellness Industries, 4(1), 25–39. https://doi.org/10.6000/1927-3037.2015.04.01.4

Issue

Section

Articles