Applications of Polyhydroxyalkanoates in the Medical Industry

Authors

  • Christopher John Brigham Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Anthony J. Sinskey Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

DOI:

https://doi.org/10.6000/1927-3037.2012.01.01.03

Keywords:

PHA, biopolymer, biodegradable, biocompatible, implant, drug release, medical device

Abstract

The bio-based, biodegradable family of polymers, polyhydroxyalkanoates (PHA), is an attractive candidate for an environmentally friendly replacement of petroleum-based plastics in many applications. In the past decade, many groups have examined the biodegradability and biocompatibility of PHA in cell culture systems or in an animal host. Findings suggest that PHA is a suitable material for fabrication of resorbable medical devices, such as sutures, meshes, implants, and tissue engineering scaffolds. The degradation kinetics of some PHA polymers is also suggestive of drug release applications. In this review, we examine the progress, potential applications, challenges and outlook in the medical polyhydroxyalkanoate field.

References

Lemoigne M. Études sur l'autolyse microbienne origine de l'acide b-oxybutyrique formé par autolyse. Ann Inst Pasteur 1927; 41: 148-65.

Boyandin AN, Prudnikova SV, Filipenko ML, Khrapov EA, Vasil'ev AD, Volova TG. Biodegradation of Polyhydroxyalkanoates by Soil Microbial Communities of Different Structures and Detection of PHA Degrading Microorganisms. Appl Biochem Microbiol 2012; 48(1): 35-44. http://dx.doi.org/10.1134/S0003683812010024

Mergaert J, Swings J. Biodiversity of microorganisms that degrade bacterial and synthetic polymers. J Ind Microbiol 1996; 17: 463-9. http://dx.doi.org/10.1007/BF01574777

Mukai K, Doi Y, Sema Y, Tomita K. Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol Lett 1993; 15(6): 601-4. http://dx.doi.org/10.1007/BF00138548

Brigham CJ, Kurosawa K, Rha CK, Sinskey AJ. Bacterial carbon storage to value added products. J Microbial Biochem Technol 2011; 83: S3-002. http://dx.doi.org/10.4172/1948-5948.S3-002

Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ. Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexa-noate) from Plant Oil by Engineered Ralstonia eutropha Strains. Appl Environ Microbiol 2011; 77(9): 2847-54. http://dx.doi.org/10.1128/AEM.02429-10

Sudesh K, Abe H, Doi Y. Synthesis, structure, and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Science 2000; 25: 1503-55. http://dx.doi.org/10.1016/S0079-6700(00)00035-6

Reusch RN. Poly-beta-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes. Proc Soc Exp Biol Med 1989; 191(4): 377-81.

Reusch RN, Sadoff HL. D-(-)-poly-beta-hydroxybutyrate in membranes of genetically competent bacteria. J Bacteriol 1983; 156(2): 778-88.

Reusch RN. Transmembrane ion transport by polyphosphate/poly-(R)-3-hydroxybutyrate complexes. Biochemistry (Mosc) 2000; 65(3): 280-95.

Shishatskaya EI, Volova TG. A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. J Mater Sci Mater Med 2004; 15(8): 915-23. http://dx.doi.org/10.1023/B:JMSM.0000036280.98763.c1

Misra SK, Valappil SP, Roy I, Boccaccini AR. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 2006; 7(8): 2249-58. http://dx.doi.org/10.1021/bm060317c

Wu Q, Wang Y, Chen GQ. Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif Cells Blood Substit Immobil Biotechnol 2009; 37(1): 1-12. http://dx.doi.org/10.1080/10731190802664429

Ji G, Wei X, Chen G. Growth of Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells on the Terpolyester Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate). J Biomater Sci 2009; 20: 325-39. http://dx.doi.org/10.1163/156856209X412191

Wei X, Hu Y, Xie W, Lin R, Chen G. Influence of poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrow-derivedmesenchymal stem cells. J Biomed Mater Res 2008: 894-905.

Rathbone S, Furrer P, Luebben J, Zinn M, Cartmell S. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J Biomed Mater Res 2009: 1391-403.

Ying TH, Ishii D, Mahara A, et al. Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials 2008; 29(10): 1307-17. http://dx.doi.org/10.1016/j.biomaterials.2007.11.031

Shishatskaya EI, Volova TG, Puzyr AP, Mogil'naya OA, Efremov SN, Gitelson, II. Tissue morphogenesis under the conditions of implantation of polyhydroxybutyrate, a biodegradable polymer. Dokl Biol Sci 2002; 383: 123-6. http://dx.doi.org/10.1023/A:1015333706311

Shishatskaya EI, Volova TG, Puzyr AP, Mogilnaya OA, Efremov SN. Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci Mater Med 2004; 15(6): 719-28. http://dx.doi.org/10.1023/B:JMSM.0000030215.49991.0d

Qu XH, Wu Q, Zhang KY, Chen GQ. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 2006; 27(19): 3540-8.

Qu XH, Wu Q, Liang J, Zou B, Chen GQ. Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials 2006; 27(15): 2944-50. http://dx.doi.org/10.1016/j.biomaterials.2006.01.013

Sevastianov VI, Perova NV, Shishatskaya EI, Kalacheva GS, Volova TG. Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J Biomater Sci Polym Ed 2003; 14(10): 1029-42. http://dx.doi.org/10.1163/156856203769231547

Doyle C, Tanner ET, Bonfield W. In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 1991; 12: 841-7. http://dx.doi.org/10.1016/0142-9612(91)90072-I

Knowles JC, Hastings GW, Ohta H, Niwa S, Boeree N. Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer. Biomaterials 1992; 13: 491-6. http://dx.doi.org/10.1016/0142-9612(92)90099-A

Luklinska ZB, Bonfield W. Morphology and ultrastructure of the interface between hydroxyapatite-polyhydroxybutyrate composite implant and bone. J Mater Sci Mater Med 1997; 8(6): 379-83. http://dx.doi.org/10.1023/A:1018589018205

Shum-Tim D, Stock U, Hrkach J, et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 1999; 68(6): 2298-304; discussion 305. http://dx.doi.org/10.1016/S0003-4975(99)01055-3

Sodian R, Sperling JS, Martin DP, Stock U, Mayer JE, Jr., Vacanti JP. Tissue engineering of a trileaflet heart valve-early in vitro experiences with a combined polymer. Tissue Eng 1999; 5(5): 489-94. http://dx.doi.org/10.1089/ten.1999.5.489

Novikov LN, Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord surgery. Biomaterials 2002; 23: 3369-76. http://dx.doi.org/10.1016/S0142-9612(02)00037-6

Freier T, Kunze C, Nischan C, et al. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials 2002; 23: 2649-57. http://dx.doi.org/10.1016/S0142-9612(01)00405-7

Zheng Z, Bei F-F, Tan H-l, Chen G-Q. Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical proerties and interactions with rabbit articular cartilage chondrocytes. Biomaterials 2005; 26: 3537-48. http://dx.doi.org/10.1016/j.biomaterials.2004.09.041

Wang Y, Bian Y, Wu Q, Chen GQ. Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 2008; 29: 2858-68. http://dx.doi.org/10.1016/j.biomaterials.2008.03.021

Kose GT, Korkusuz F, Ozkul A, et al. Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials 2005; 26: 5187-97. http://dx.doi.org/10.1016/j.biomaterials.2005.01.037

Xu XY, Li XT, Peng SW, et al. The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 2010; 31(14): 3967-75. http://dx.doi.org/10.1016/j.biomaterials.2010.01.132

Wang Y, Wu Q, Chen GQ. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials 2004; 25: 669-75. http://dx.doi.org/10.1016/S0142-9612(03)00561-1

Wang YW, Yang F, Wu Q, et al. Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 2005; 26(7): 755-61. http://dx.doi.org/10.1016/j.biomaterials.2004.03.023

Ellis G, Cano P, Jadraque M, et al. Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study. Anal Bioanal Chem 2011; 399(7): 2379-88. http://dx.doi.org/10.1007/s00216-011-4653-8

Shishatskaya EI, Volova TG, Efremov SN, Puzyr' AP, Mogil'naya OA. Tissue response to biodegradable suture threads made of polyhydroxyalkanoates. Biomed Eng 2002; 36(4): 210-7. http://dx.doi.org/10.1023/A:1021184119268

Leenstra TS, Kuijpers-Jagtman AM, Maltha JC. The healing process of palatal tissues after palatal surgery with and without implantation of membranes: an experimental study in dogs. J Mater Sci Mater Med 1998; 9(5): 249-55. http://dx.doi.org/10.1023/A:1008848509911

Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong absorbable biomaterial. Biochem Eng J 2003; 16(2): 97-105. http://dx.doi.org/10.1016/S1369-703X(03)00040-8

Grage K, Jahns AC, Parlane N, et al. Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 2009; 10(4): 660-9. http://dx.doi.org/10.1021/bm801394s

Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 2001; 53(1): 5-21. http://dx.doi.org/10.1016/S0169-409X(01)00218-6

Rossi S, Azghani AO, Omri A. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother 2004; 54(6): 1013-8. http://dx.doi.org/10.1093/jac/dkh477

Tuercin F, Gursel I, Hasirci V. Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polymer Edn 2001; 12(2): 195-207. http://dx.doi.org/10.1163/156856201750180924

Wang Z, Itoh Y, Hosaka Y, et al. Mechanism of enhancement effect of dendrimer on transdermal drug permeation through polyhydroxyalkanoate matrix. J Biosci Bioeng 2003; 96(6): 537-40. http://dx.doi.org/10.1016/S1389-1723(04)70146-2

Gursel I, Yagmurlu F, Korkusuz F, Hasirci V. In vitro antibiotic release from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J Microencapsul 2002; 19: 153-64. http://dx.doi.org/10.1080/02652040110065413

Shishatskaya EI, Goreva AV, Voinova ON, Inzhevatkin EV, Khlebopros RG, Volova TG. Evaluation of antitumor activity of rubomycin deposited in absorbable polymeric microparticles. Bull Exp Biol Med 2008; 145(3): 358-61. http://dx.doi.org/10.1007/s10517-008-0091-9

Yao YC, Zhan XY, Zhang J, et al. A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 2008; 29(36): 4823-30. http://dx.doi.org/10.1016/j.biomaterials.2008.09.008

Shishatskaya EI, Volova TG, Gitelson, II. On the involvement of macrophages and phosphomonoesterases in the tissue response to implantation of polyhydroxyalkanoates. Dokl Biol Sci 2002; 383: 116-9. http://dx.doi.org/10.1023/A:1015329605403

Shishatskaya EI, Volova TG, Gitelson, II. In vivo toxicological evaluation of polyhydroxyalkanoates. Dokl Biol Sci 2002; 383: 109-11. http://dx.doi.org/10.1023/A:1015325504494

Shishatskaya EI, Voinova ON, Goreva AV, Mogilnaya OA, Volova TG. Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med 2008; 19(6): 2493-502. http://dx.doi.org/10.1007/s10856-007-3345-6

Sendil D, Gursel I, Wise DL, Hasirci V. Antibiotic release from biodegradable PHBV microparticles. J Control Release 1999; 59(2): 207-17. http://dx.doi.org/10.1016/S0168-3659(98)00195-3

Kassab AC, Xu K, Denkbas EB, Dou Y, Zhao S, Piskin E. Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. J Biomater Sci Polym Ed 1997; 8(12): 947-61. http://dx.doi.org/10.1163/156856297X00119

Yagmurlu MF, Korkusuz F, Gursel I, Korkusuz P, Ors U, Hasirci V. Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res 1999; 46(4): 494-503. http://dx.doi.org/10.1002/(SICI)1097-4636(19990915)46:4<494::AID-JBM7>3.0.CO;2-E

Li H, Chang J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J Control Release 2005; 107(3): 463-73. http://dx.doi.org/10.1016/j.jconrel.2005.05.019

Downloads

Published

2012-04-04

How to Cite

Brigham, C. J., & Sinskey, A. J. (2012). Applications of Polyhydroxyalkanoates in the Medical Industry. International Journal of Biotechnology for Wellness Industries, 1(1), 52–60. https://doi.org/10.6000/1927-3037.2012.01.01.03

Issue

Section

Articles