An Application of Gamma Generalized Linear Model for Estimation of Survival Function of Diabetic Nephropathy Patients

Gurprit Grover, Alka Sabharwal Alka Sabharwal, Juhi Mittal


Diabetic nephropathy (DN) is a generic term referring to deleterious effect on renal structure and/or function caused by diabetes mellitus. World Health Organization estimates that diabetes affects more than 170 million people worldwide and this number may rise to 370 million by 2030. The rate of rise in Serum Creatinine (SrCr) is a well-accepted marker for the progression of Diabetic Nephropathy (DN). In this paper, survival functions of type 2 diabetic patients with renal complication are estimated. Firstly, most appropriate distribution for duration of diabetes is selected through minimum Akaike Information Criterion value, Gamma distribution is found to be an appropriate model. Secondly, the parameters estimates of the selected distribution are obtained by fitting a Generalized Linear Model (GLM), with duration of diabetes as the response variable and predictors as SrCr and number of successes (number of times SrCr values exceed its normal range (1.4 mg/dl)). These covariates are linked with the response variable using two different link functions namely log and reciprocal links. Using the estimates of parameters obtained from generalized linear regression analysis, survival functions for different durations under both the links are estimated. Further we compared the estimated survival functions under both the links with Kaplan Meier (KM) estimates graphically. Findings suggested that the Kaplan Meier estimate and Gamma distribution under both links provided a close estimate of survival functions. Median survival time is 16.3 years and 16.8 years obtained from KM method and Gamma GLM respectively.


Akaike Information Criterion, Gamma distribution, generalized linear models, Kaplan Meier method, log link, reciprocal link, serum creatinine, survival distributions

Full Text:



  • There are currently no refbacks.

ISSN: 1929-6029