Bovine Tuberculosis Testing in Colombia: Comparative Histopathological, Microbiological, and Molecular Biology Findings

Authors

  • Paula Palomino Cadavid Research Group in Animal Sciences (INCA-CES), Faculty of Veterinary Medicine and Zootechnics, CES University, Medellin, Colombia
  • Dubel Ignacio Balvin Research Group in Animal Sciences (INCA-CES), Faculty of Veterinary Medicine and Zootechnics, CES University, Medellin, Colombia
  • Rafael Villarreal Julio Research Group PECET, Study and Control Program for Tropical Diseases, School of Medicine, University of Antioquia, Medellin, Colombia and Biotech Molecular Research Group, Molecular, Genetic and Computational Biology Unit, Medellin Colombia
  • Enderson Murillo Ramos Research Group LIME Faculty of Medicine, University of Antioquia, Medellin, Colombia, Medellin, Colombia
  • Jesus Berdugo Gutierrez Grupo de Investigación en Ciencias de la Orinoquia, Universidad Nacional de Colombia-Sede Orinoquia Arauca, Arauca, Colombia https://orcid.org/0000-0002-1556-6387
  • Jhon Didier Ruiz Buitrago Research Group in Animal Sciences (INCA-CES), Faculty of Veterinary Medicine and Zootechnics, CES University, Medellin, Colombia
  • Rene Ramirez Garcia Research Group in Animal Sciences (INCA-CES), Faculty of Veterinary Medicine and Zootechnics, CES University, Medellin, Colombia

DOI:

https://doi.org/10.6000/1927-520X.2024.13.06

Keywords:

Microbiological isolation, Bubalus bubalis, DPP, Histopathology, Mycobacterium bovis, PCR HRM

Abstract

Introduction: Bovine tuberculosis (bTB) is a zoonotic infectious disease present in Colombia, caused by Mycobacterium bovis, and causes tuberculosis in water buffalo (Bubalus bubalis). Diagnosis of bovine tuberculosis through the intradermal test is difficult; evaluating and understanding the behavior of other diagnostic tests is necessary.

Objective: To describe the behavior and results of different diagnostic methods for bovine tuberculosis in water buffalo positive for the Purifed Proteic Derivate (DPP) intradermal test.

Methodology: In water buffaloes positive for comparative cervical tuberculin test, different diagnostic methods were applied, described, and compared: Ziehl-Neelsen staining, microbiological culture, histopathological analysis, and PCR-HRM.

Results: Histopathological tests showed that 26 water buffalo positive for DPP (52%) had histological lesions compatible with bovine tuberculosis. 37% of the evaluated samples from tuberculin-positive Buffalo's lungs and secondary lymph nodes showed acid-alcohol-resistant bacillus with Ziehl-Neelsen staining. Four samples of Mycobacterium bovis from tuberculin-positive buffalo were isolated and identified, with two of these isolates confirmed from tissues with PCR-HRM, and three buffalo with microbiological isolates presented granulomatous lesions through histological analysis. Seventeen tuberculin-positive buffalo (34%) tested positive for real-time PCR HRM, and nine of these buffalo did not have histological lesions compatible with bTB and were confirmed with the molecular test.

Conclusion: Our results provide positive evidence of histological findings, microbiological isolation, and molecular diagnosis of tuberculin-positive water buffalo in the lowlands of Colombia. None of the complementary tests performed showed 100% concordance with the comparative cervical tuberculin test results for bTB.

References

Branger M, Hauer A, Michelet L, Karoui C, Cochard T, De Cruz K, et al. Draft Genome Sequences of Three Mycobacterium bovis Strains Identified in Cattle and Wildlife in France. Genome Announc 2017; 5 (27). https://doi.org/10.1128/genomeA.00410-17 DOI: https://doi.org/10.1128/genomeA.00410-17

Bodal VK, Bal MS, Bhagat S, Kishan J, Deepika, Brar RK. Fluorescent microscopy and Ziehl-Neelsen staining of bronchoalveolar lavage, bronchial washings, bronchoscopic brushing, and post-bronchoscopic sputum, along with cytological examination in cases of suspected tuberculosis. Indian J Pathol Microbiol 2015; 58(4): 443-7. https://doi.org/10.4103/0377-4929.168849 DOI: https://doi.org/10.4103/0377-4929.168849

Wahdan A, Riad EM, Enany S. Genetic differentiation of Mycobacterium bovis and Mycobacterium tuberculosis isolated from cattle and human sources in Egypt [Suez Canal area]. Comp Immunol Microbiol Infect Dis 2020; 73: 101553. https://doi.org/10.1016/j.cimid.2020.101553 DOI: https://doi.org/10.1016/j.cimid.2020.101553

Leal Bohorquez AF, Castro Osorio CM, Wintaco Martinez LM, Puerto GM, Villalobos R. Tuberculosis por Mycobacterium bovis en trabajadores de fincas en saneamiento para tuberculosis bovina, de Antioquia, Boyacá y Cundinamarca. Rev Salud Pública 2017; 18(5): 727. https://doi.org/10.15446/rsap.v18n5.51187 DOI: https://doi.org/10.15446/rsap.v18n5.51187

Hotter GS, Collins DM. Mycobacterium bovis lipids: virulence and vaccines. Vet Microbiol 2011; 151(1-2): 91-8. https://doi.org/10.1016/j.vetmic.2011.02.030 DOI: https://doi.org/10.1016/j.vetmic.2011.02.030

Instituto Colombiano agropecuario ICA. Programa Nacional control y erradicacion de tuberculosis bovina [Internet] 2024; Disponible en: https://onx.la/1b478

Albernaz TT, Oliveira CMC, Lima DH da S, da Silva e Silva N, Cardoso DP, Lopes CTA, et al. Comparison of the tuberculin test, histopathological examination, and bacterial culture for the diagnosis of tuberculosis [Mycobacterium bovis] in buffaloes (Bubalus bubalis) in Brazil. Trop Anim Health Prod 2015; 47 (6): 1153-9. https://doi.org/10.1007/s11250-015-0842-3 DOI: https://doi.org/10.1007/s11250-015-0842-3

Catozzi C, Zamarian V, Marziano G, Costa ED, Martucciello A, Serpe P, et al. The effects of intradermal M. bovis and M. avium PPD test on immune-related mRNA and miRNA in dermal oedema exudates of water buffaloes (Bubalus bubalis). Trop Anim Health Prod 2021; 53(2): 250. https://doi.org/10.1007/s11250-021-02696-1 DOI: https://doi.org/10.1007/s11250-021-02696-1

Elsayed MSAE, Amer A. The rapid detection and differentiation of Mycobacterium tuberculosis complex members from cattle and water buffaloes in the delta area of Egypt, using a combination of real-time and conventional PCR. Mol Biol Rep 2019; 46(4): 3909-19. https://doi.org/10.1007/s11033-019-04834-3 DOI: https://doi.org/10.1007/s11033-019-04834-3

Bernitz N, Goosen WJ, Clarke C, Kerr TJ, Higgitt R, Roos EO, et al. Parallel testing increases the detection of Mycobacterium bovis-infected African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 2018; 204: 40-3. https://doi.org/10.1016/j.vetimm.2018.09.004 DOI: https://doi.org/10.1016/j.vetimm.2018.09.004

van der Heijden EMDL, Cooper DV, Rutten VPMG, Michel AL. Mycobacterium bovis prevalence affects the performance of a commercial serological assay for bovine tuberculosis in African buffaloes. Comp Immunol Microbiol Infect Dis 2020; 70: 101369. https://doi.org/10.1016/j.cimid.2019.101369 DOI: https://doi.org/10.1016/j.cimid.2019.101369

WHO (Internet). (citado 27 de marzo de 2015). OMS | Cibersalud e innovación en materia de salud de la mujer y el niño: informe de referencia. Disponible en: http://www.who.int/publications/list/baseline/es/

Vilchèze C, Kremer L. Acid-Fast Positive and Acid-Fast Negative Mycobacterium tuberculosis: The Koch Paradox. Microbiol Spectr 2017; 5(2). https://doi.org/10.1128/microbiolspec.TBTB2-0003-2015 DOI: https://doi.org/10.1128/microbiolspec.TBTB2-0003-2015

Carrisoza-Urbina J, Morales-Salinas E, Bedolla-Alva MA, Hernández-Pando R, Gutiérrez-Pabello JA. Atypical granuloma formation in Mycobacterium bovis-infected calves. PloS One 2019; 14(7): e0218547. https://doi.org/10.1371/journal.pone.0218547 DOI: https://doi.org/10.1371/journal.pone.0218547

Seva J, Sanes JM, Ramis G, Mas A, Quereda JJ, Villarreal-Ramos B, et al. Evaluation of the single cervical skin test and interferon-gamma responses to detect Mycobacterium bovis-infected cattle in a herd co-infected with Mycobacterium avium subsp. Paratuberculosis. Vet Microbiol 2014; 171(1-2): 139-46. https://doi.org/10.1016/j.vetmic.2014.03.035 DOI: https://doi.org/10.1016/j.vetmic.2014.03.035

Gormley E, Corner L a. L, Costello E, Rodriguez-Campos S. Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci 2014; 97 Suppl: S30-43. https://doi.org/10.1016/j.rvsc.2014.04.010 DOI: https://doi.org/10.1016/j.rvsc.2014.04.010

Akhtar F, Javed MT, Aziz-ur-Rehman, Khan MN, Akhtar P, Hussain SM, et al. The use of PCR technique in the identification of Mycobacterium species responsible for bovine tuberculosis in cattle and buffaloes in Pakistan. Trop Anim Health Prod 2015; 47(6): 1169-75. https://doi.org/10.1007/s11250-015-0844-1 DOI: https://doi.org/10.1007/s11250-015-0844-1

Instituto Colombiano agropecuario ICA. Medidas sanitarias para la Prevención, el Control y la Erradicación de la Tuberculosis Bovina en Colombia.(Internet). Disponible en: https://onx.la/5103e

Issa R, Abdul H, Hashim SH, Seradja VH, Shaili N 'Aishah, Hassan NAM. High-resolution melting analysis for the differentiation of Mycobacterium species. J Med Microbiol 2014; 63 (Pt 10): 1284-7. https://doi.org/10.1099/jmm.0.072611-0 DOI: https://doi.org/10.1099/jmm.0.072611-0

Pesciaroli M, Alvarez J, Boniotti MB, Cagiola M, Di Marco V, Marianelli C, et al. Tuberculosis in domestic animal species. Res Vet Sci 2014; 97 Suppl: S78-85. https://doi.org/10.1016/j.rvsc.2014.05.015 DOI: https://doi.org/10.1016/j.rvsc.2014.05.015

World Health Organization. Global tuberculosis report 2022 (Internet). Geneva: World Health Organization; 2022 (citado 27 de octubre de 2022). Disponible en: https://apps.who.int/iris/handle/10665/363752

Martucciello A, Vitale N, Mazzone P, Dondo A, Archetti I, Chiavacci L, et al. Field Evaluation of the Interferon Gamma Assay for Diagnosis of Tuberculosis in Water Buffalo (Bubalus bubalis) Comparing Four Interpretative Criteria. Front Vet Sci 2020; 7: 563792. https://doi.org/10.3389/fvets.2020.563792 DOI: https://doi.org/10.3389/fvets.2020.563792

Kumar M, Kumar T, Jangir BL, Singh M, Arora D, Bangar Y, et al. Comparative analysis of tuberculin and defined antigen skin tests for detection of bovine tuberculosis in buffaloes (Bubalus bubalis) in Haryana state, India. BMC Vet Res 2024; 20(1): 65. https://doi.org/10.1186/s12917-024-03913-3 DOI: https://doi.org/10.1186/s12917-024-03913-3

Olea-Popelka F, Muwonge A, Perera A, Dean AS, Mumford E, Erlacher-Vindel E, et al. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis-a call for action. Lancet Infect Dis 2017; 17(1): e21-5. https://doi.org/10.1016/S1473-3099(16)30139-6 DOI: https://doi.org/10.1016/S1473-3099(16)30139-6

Lee ASG, Ong DCT. Molecular diagnostic methods for the detection of Mycobacterium tuberculosis resistance: the potential of high-resolution melting analysis. Expert Rev Anti Infect Ther 2012; 10(10): 1075-7. https://doi.org/10.1586/eri.12.94 DOI: https://doi.org/10.1586/eri.12.94

Landolt P, Stephan R, Scherrer S. Development of a new High-Resolution Melting [HRM] assay for identification and differentiation of Mycobacterium tuberculosis complex samples. Sci Rep 2019; 9(1): 1850. https://doi.org/10.1038/s41598-018-38243-6 DOI: https://doi.org/10.1038/s41598-018-38243-6

Araújo CP, Osório ALAR, Jorge KSG, Ramos CAN, Filho AFS, Vidal CES, et al. Detection of Mycobacterium bovis in bovine and bubaline tissues using nested-PCR for TbD1. PloS One 2014; 9(3): e91023. https://doi.org/10.1371/journal.pone.0091023 DOI: https://doi.org/10.1371/journal.pone.0091023

Taylor GM, Worth DR, Palmer S, Jahans K, Hewinson RG. Rapid detection of Mycobacterium bovis DNA in cattle lymph nodes with visible lesions using PCR. BMC Vet Res 2007;3:12. https://doi.org/10.1186/1746-6148-3-12 DOI: https://doi.org/10.1186/1746-6148-3-12

Hauer A, De Cruz K, Cochard T, Godreuil S, Karoui C, Henault S, et al. Genetic evolution of Mycobacterium bovis causing tuberculosis in livestock and wildlife in France since 1978. PloS One 2015; 10(2): e0117103. https://doi.org/10.1371/journal.pone.0117103 DOI: https://doi.org/10.1371/journal.pone.0117103

Ahmad Z, Tyagi S, Minkowsk A, Almeida D, Nuermberger EL, Peck KM, et al. Activity of 5-chloro-pyrazinamide in mice infected with Mycobacterium tuberculosis or Mycobacterium bovis. Indian J Med Res 2012; 136 (5): 808-14.

Khattak I, Mushtaq MH, Ayaz S, Ali S, Sheed A, Muhammad J, et al. Incidence and Drug Resistance of Zoonotic Mycobacterium bovis Infection in Peshawar, Pakistan. Adv Exp Med Biol 2018; 1057: 111-26. https://doi.org/10.1007/5584_2018_170 DOI: https://doi.org/10.1007/5584_2018_170

Zimpel CK, Brum JS, de Souza Filho AF, Biondo AW, Perotta JH, Dib CC, et al. Mycobacterium bovis in a European bison [Bison bonasus] raises concerns about tuberculosis in Brazilian captive wildlife populations: a case report. BMC Res Notes 2017; 10(1): 91. https://doi.org/10.1186/s13104-017-2413-3 DOI: https://doi.org/10.1186/s13104-017-2413-3

Mertoğlu A, Biçmen C, Karaarslan S, Buğdayci MH. Pulmonary tuberculosis due to Mycobacterium bovis revealed by skin lesion in slaughterhouse worker. Clin Respir J 2016. https://doi.org/10.1111/crj.12485 DOI: https://doi.org/10.1111/crj.12485

Downloads

Published

2024-03-26

How to Cite

Cadavid, P. P. ., Balvin, D. I. ., Julio, R. V. ., Ramos, E. M. ., Gutierrez, J. B. ., Buitrago, J. D. R. ., & Garcia, R. R. . (2024). Bovine Tuberculosis Testing in Colombia: Comparative Histopathological, Microbiological, and Molecular Biology Findings. Journal of Buffalo Science, 13, 53–63. https://doi.org/10.6000/1927-520X.2024.13.06

Issue

Section

Articles

Most read articles by the same author(s)