Usefulness of Bioindicators and Biomarkers in Pollution Biomonitoring


  • Amel Hamza-Chaffai Sfax University-Tunisia



Marine pollution, bivalves, Ruditapes decussates, Cerastoderma glaucum, field validation


We have different possibilities and tools to assess the impact of pollution on marine ecosystems. The ecotoxicological approaches are based on the use of biomonitors and biomarkers. They aim to study the effect of toxic chemicals on the biological organisms especially at the population, community and ecosystem levels. The ultimate goal of ecotoxicology is to be able to predict the effects of pollution so that the most efficient and effective action to prevent or remediate any detrimental effect.

In order to assess the impact of anthropogenic activities on the aquatic ecosystem and to insure compliance with regulation or guidelines, we use biomonitoring. This kind of approach is based on the use of biological responses in order to assess anthropogenic changes in the environment. Biomonitoring involves the use of indicator species such as filter feeding mollusk bivalves. These organisms tend to accumulate pollutants in their tissues without showing any apparent detrimental effect. Moreover, they could reflect the real bio available fraction of the pollutant. In order to have an early warning system predicting the pollution effects even at low levels, biomarkers were extensively studied. Some of them were validated in both field and in vivo conditions.

In the present paper, the usefulness of bioindicators and biomarkers in pollution monitoring are discussed. An overview of results from case studies dealing with in situ, in vivo and transplantation experiments is presented.


[1] Murray TB, Michael HD. Determinant of trace metal concentrations in marine organisms. In: Langston B, Bebianno MJ, editors. Metal metabolism in aquatic environments. London: Chapman & Hall 1998; p. 185-217.
[2] Lagadic L, Caquet T, Amiard JC. Biomarqueurs en écotoxicologie: principes et définitions (introduction). In: Lagadic L, Caquet T, Amiard JC, editors. Biomarqueurs en écotoxicologie, aspects fondamentaux. Paris: Masson 1997; pp. 1-7.
[3] Phillips DJH, Rainbow PS. Biomonitoring of Trace Aquatic Contaminants. 2nd. ed. London: Chapman and Hall 1994.
[4] Gerhardt A. Biomonitoring of Polluted Water. Reviews on Actual Topics. Trans Tech Publ, Zürich, Switzerland 1999; p. 301.
[5] Fureder L, Reynolds JD. Is austropotamobius pallipes a good bioindicators? Bull Fr Pêche Piscic 2003; 157-63.
[6] Zhoua Q, Zhanga J, Fua J, Shi J, Jiang G. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta2008; 606(2): 135-50.
[7] Marbà N, Santiago R, Díaz-Almela E, Álvarez E, Duarte CM. Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Sci 2006; 67: 475-83.
[8] Stellio C, Cédric B. Modelling trace metal (Hg and Pb) bioaccumulation in the Mediterranean mussel, Mytilus galloprovincialis, applied to environmental monitoring. J Sea Res 2006; 56(2): 168-81.
[9] Yungkul K, Eric NP, Terry LW, Bobby JP.Relationship of parasites and pathologies to contaminant body burden in sentinel bivalves: NOAA Status and Trends ‘Mussel Watch’ Program. Marine Environ Res 2008; 65(2): 101-27.
[10] Rocher B, Le Goff J, Peluhet L, et al.Genotoxicant accumulation and cellular defence activation in bivalves chronically exposed to waterborne contaminants from the Seine River.Aquat Toxicol 2006; 79 (1): 65-77.
[11] Macherki-Ajimi M, Rebai T, Hamza-Chaffai A. Variation of metallothionein-like protein and metal concentration during the reproductive cycle of the cockle Cerastoderma glaucumfrom uncontaminated site: a one year study in the gulf of Gabès area. Marine Biol Res 2010; 7(3): 261-71.
[12] Ladhar-Chaabouni R, Smaoui-Damak W, Hamza-Chaffai A. In vivo variation of some biomarkers with time and cadmium concentration in the cockle Cerastoderma glaucum. Marine Biol Res 2009; 5: 487-95.
[13] Damak-Smaoui W, Mathieu M, Rebai T, Hamza-Chaffai A. Histology of the reproductive tissue of the clam Ruditapes decussates. Inv Repr Dev 2007; 50(3): 117-26.
[14] Hamza-Chaffai A, Amirad JC, Pellerin J, Joux L, Berthet B. The potential use of metallothionein in the clam Ruditapes decussatus as a biomarker of in situ metal exposure. Comp Biochem Physiol 2000; 127(Pt C): 185-97.
[15] Macherki-Ajimi M, Ketata I, Ladhar-Chaabouni R, Hamza-Chaffai. The effect of in situ cadmium contamination on some biomarkers in Cerastoderma glaucum. Ecotoxicol 2008; 17: 1-11.
[16] Damak-SmaouiW, Hamza-Chaffai A, Berthet B, Amirad JC. Preliminary study of the clam Ruditapes decussatus exposed in situ to metal contamination and originating from the gulf of gabès. Bull Environ Contam Toxicol 2003; 71(5): 961-70.
[17] Macherki-Ajimi M, Hamza-Chaffai A. Assessment of sediment/water contamination by in vivo transplantation of the cockles Cerastoderma glaucum from a non-contaminated to a contaminated area by cadmium. Ecotoxicol 2008; 17: 802-10.
[18] Damak-SmaouiW, Guebsi F, Kostil C, Rebai T, Hamza-Chaffai A. Storage and reproductive strategy of the carpet-shell clam, Ruditapes decussatus in the Gulf of Gabès (Tunisia). Inv Reprod Dev 2011; 1-11.
[19] Macherki-Ajimi M, Rebai T, Hamza-Chaffai A. Reproductive strategy in a littoral population of the cockle Cersatodertma glaucum from the gulf of Gabès. J Shellfish Res 2013; 32(3): 733-38.
[20] National Research Council. Committee on biological markers. Env Health Perspective 1987; 74: 3-9.
[21] Nicholson S. The mytilid mussel Perna viridis (Mytilidae: Bivalvia) as a pollution monitor in Hong Kong. In: Shin PKS, editors. Turning the tides, Marine Biological Association of Hong Kong. Hong Kong: University Press 2003; pp. 201-28.
[22] Forbes VE, Forbes TL. Ecotoxicology in Theory and Practice. London: Chapman and Hall 1994.
[23] Shugart LR, Theodorakis CW. Genetic ecotoxicology: The genotypic diversity approach. Comp Biochem Physiol 1996; 113(Pt C): 273-76.
[24] Thompson JAJ, Cosson RP. An improved electrochemical method for the quantification of metallothionein in marine organisms. Mar Environ Res 1984; 11: 137-52.
[25] Isani G, Andreani G, Kindt M, Carpène E. Metallothioneins (MTs) in marine molluscs. Cell Mol Biol 2000; 46(2): 311-30.
[26] Hamza-Chaffai A, Pellerin J, Amirad JC. Health assessment of Ruditapes decussatus from the Gulf of Gabes (Tunisia). Environ Int 2003; 28: 609-17.
[27] Ivankovi D, Pavii J, Erk M, Filipovi-Mariji V, Raspor B. Evaluation of the Mytilus galloprovincialis Lam. digestive gland metallothionein as a biomarker in a long-term field study: Seasonal and spatial variability. Marine Pollution Bull 2005; 50(11): 1303-13.
[28] Legeay A, Achard-Joris M, Baudrimont M, Massabuau JC, Bourdineaud JP. Impact of cadmium contamination and oxygenation levels on biochemical responses in the Asiatic clam Corbicula fluminea. Aquat Toxicol 2005; 74(3): 242-53.
[29] Sandrine P, Marc P. Identification of multixenobiotic defence mechanism (MXR) background activities in the freshwater bivalve Dreissena polymorpha as reference values for its use as biomarker in contaminated ecosystems. Chemosphere 2007; 67 1258-63.
[30] Hellou J, Law RJ. Stress on stress response of wild mussels, Mytilus edulis and Mytilus trossulus, as an indicator of ecosystem health. Environ Pollut 2003; 126 (3): 407-16.
[31] Dixon DR, Pruski AM, Dixon LRJ, Jha AN. Marine invertebrate eco-genotoxicology: a methodological overview. Mutagenesis 2002; 17: 495-507.
[32] Siu WHL, Hung CLH, Wong HL, Richardson BJ, Lam PKS. Exposure and time dependent DNA strand breakage in hepatopancreas of green-lipped mussels (Perna viridis) exposed to Aroclor 1254, and mixtures of B
[a]P and Aroclor 1254. Marine Pollution Bull 2003; 46: 1285-93.
[33] Magni P, De Falco G, Falugi C, et al. Genotoxicity biomarkers and acetylcholinesterase activity in natural populations of Mytilus galloprovincialis along a pollution gradient in the Gulf of Oristano (Sardinia, western Mediterranean). Environ Pollution 2006; 142: 65-72.
[34] Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 2000; 247: 295-311.
[35] Domouhtsidou GP, Dailianis S, Kaloyianni M, Dimitriadis VK. Lysosomal membrane stability and metallothionein content in Mytilus galloprovincialis (L.), as biomarkers Combination with trace metal concentrations. Marine Pollution Bull 2004; 48(5-6): 572-86.
[36] Nebert DW. The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects. Crit Rev Toxicol 1989; 20:153-74.
[37] Stegeman JJ, Hahn ME. Biochemistry and molecular biology of monooxygenases: current perspectives on forms, functions, and regulation of cytochrome P450 in aquatic species. In: Malins DC, Ostrander GK, editors. Boca Raton: Aquatic Publishers 1994; pp. 87-203.
[38] Parkinson A. Biotransformation of xenobiotics. In: Klaassen CD, editor. Casarett and Doull’s toxicology. 3rd ed. New York: McGraw-Hill 1995; pp. 113-86.
[39] Auffret M, Rousseau S, Boutet I, et al. A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranean. Ecotoxicol Environ Safety 2006; 63: 393-405.
[40] Amiard JC, Cosson RP. Les métallothionéins. In: Lagadic L, Caquet Th, Amiard JC, Ramade F, editors. Biomarqueurs en Ecotoxicologie: Aspects Fondamantaux. Paris: Masson 1997; pp. 53-66.
[41] Roesijadi G. Metal transfer as a mechanism for metallothionein-mediated metal detoxification. Cell Mol Biol 2000; 46: 293-405.
[42] Pellerin- Massicotte J. Influence of elevated temperature and air exposure on MDA levels and catalase activities in digestive glands of the blue mussel (Mytilus edulis). J Rech Océanogr 1997; 22: 91-8.
[43] Gauthier-Clerc S, Pellerin J, Blaise C, Gagné F. Delayed gametogenesis of Mya arenaria in the Saguenay fjord (Canada): a consequence of endocrine disruptors? Comp Biochem Physiol 2002; 131(Pt C): 457-67. PII: S1532-04560 2.00041-8
[44] Pellerin J, Vincent B, Pelletier E. Evaluation écotoxicologique de la qualité de la baie des Anglais (Québec). Water Pollut Res J Can 1993; 28: 665-89.
[45] Hamza-Chaffai A, Amiard-Triquet C, El Abed A. Metallothionein-like protein, is it an efficient biomarker of metal contamination? A case study based on fish from the Tunisian coast. Arch Environ Contam Toxicol 1997; 33: 53-62.
[46] Hamza-Chaffai A, Romeo M, Gnassia-Barelli M, El Abed A. Effect of copper and lindane on some biomarkers measured in the clam Ruditapes decussatus. Bull Environ Contam Toxicol 1998; 61: 397-404.
[47] Mc Carty JF, Shugart LR. Biomarkers of Environmental Contamination. Chelsea: Lewis Publishers 1990.
[48] Pellerin-Massicotte J. Oxidative processes as indicators of chemical stress in marine bivalves. J Aquat Ecosystem Health 1994; 3: 101-11.
[49] Ladhar-Chaabouni R, Macherki-Ajimi M, Hamza-Chaffai A. Use of metallothioneins as biomarkers for environmental quality assessment in the Gulf of Gabès (Tunisia). Environ Monit Assessment 2012; 184: 2177-92.
[50] Nicholson S, Lam PK. Pollution monitoring in South East Asia using biomarkers in the mytilid mussel Perna viridis(mytilidae: Bivalvia). Environ Int 2005; 31: 121-32.
[51] Depledge MH, Fossi MC. The role of biomarkers in environmental assessment (2). Invertebrates. Ecotoxicol 1994; 3: 161-72.
[52] Handy RD, Galloway TS, Depledge MH. A proposal for the use of biomarkers for the assessment of chronic pollution and in regulatory toxicology. Ecotoxicol 2003; 1-2: 331-43.
[53] UNEP. Report of the meeting of experts to review the MED POL biomonitoring programme. Athens, Greece: UNEP- OCA/MED WG. 132/7, 1997.
[54] Med Pol, UNEP. Guidelines for river (including estuaries) pollution monitoring programme for the mediterranean region. Athens: UNEP/MAP; 2004.
[55] Verlecar XN, Desai SR, Sarkar A, Dalal SG. Biological indicators in relation to coastal pollution along Karnataka coast, India. Water Res 2006; 40(17): 3304-12.
[56] Nicholson S. Ecocytological and toxicological responses to copper in Perna viridis (L.) (Bivalvia: Mytilidae) haemocyte lysosomal membranes. Chemosphere 2001; 45: 399-407.
[57] Nicholson S. Ecophysiological aspects of cardiac activity in the subtropical mussel Perna viridis (L.) (Bivalvia: Mytilidae). Journal of Experimental Marine Biol Ecol 2002; 267: 207-22.
[58] Smaoui-Damak W, Rebai T, Berthet B, Hamza-Chaffai A. Does cadmium pollution affect reproduction in the clam Ruditapes decussatus? A one-year case study. Comp Biochem Physiol 2006; 143 (Pt C): 252–61.
[59] Ladhar-Chaabouni R, Gargouri- Mokdad R, Denis F, Hamza-Chaffai A. Cloning and characterization of cDNA probes for the analysis of metallothionein gene expression in the Mediterranean bivalves: Ruditapes decussatus and Cerastoderma glaucum. Mol Biol Rep 2009; 36:1007-14.
[60] Ladhar-Chaabouni R, Macherki-Ajimi M, Hamza-Chaffai A. Spatial distribution of cadmium and some biomarkers in Cerastoderma glaucum living in a polluted area. Marine Biol Res 2009; 5: 478-86.
[61] Mezghani-Chaari S, Hamza A, Hamza-Chaffai A. Mercury contamination in human hair and some marine species from Sfax coasts of Tunisia: levels and risk assessment. Environ Monit Assess 2011; 180: 477-87.
[62] Karray S, Denis F, Moreau B, Chaffai A, Chénais B, Marchand J. Transcriptional responses of stress genes in experimental and natural populations of the cockle Cerastoderma glaucum originating from the gulf of Gabes, Sfax, Tunisia. PRIMO 17th, Faro, Portugal 2013.