Lifescience Global

Editor’s Choice : Observation-Driven Model for Zero-Inflated Daily Counts of Emergency Room Visit Data

ijsmr logo-pdf 1349088093

Observation-Driven Model for Zero-Inflated Daily Counts of Emergency Room Visit Data
Pages 220-228
Gary Sneddon, Wasimul Bari and M. Tariqul Hasan
Published: 31 July 2013

Abstract: Time series data with excessive zeros frequently occur in medical and health studies. To analyze time series count data without excessive zeros, observation-driven Poisson regression models are commonly used in the literature. As handling excessive zeros in count data is not straightforward, observation-driven models are rarely used to analyze time series count data with excessive zeros. In this paper an observation-driven zero-inflated Poisson (ZIP) model for time series count data is proposed. This approach can accommodate an autoregressive serial dependence structure which commonly appears in time series. The estimation of the model parameters by using the quasi-likelihood estimating equation approach is discussed. To estimate the correlation parameters of the dependence structure, a moment approach is used. The proposed methodology is illustrated by applying it to a data set of daily emergency room visits due to bronchitis.

Keywords: Autocorrelation structure, non-stationary, observation-driven model, quasi-likelihood, zero-inflated Poisson.
Download Full Article
Submit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn


♦  Worldwide readership
♦  High quality content
♦  Maximum visibility
♦  Efficient publishing
♦  Optional Open Access

Publish your Research


As an author what type of publishing model you prefer?

Open Access
Optional Open Access
Subscription based
5 Votes left