jtire
Abstract : Numerical Prediction of Thermal Storage Using Phase Change Material
|
|
|
Abstract: A numerical mathematical model has been developed to predict the thermal behavior of phase change material during thermal storage. The model includes the effects of various mechanisms of heat transfer such as conduction, convection as well as fusion of the phase change material. Water/Ice was used as a phase change material. The thermal behavior of the phase change material during cooling has been studied experimentally and analyzed under different conditions. Comparisons were made against experimental data for validation of the predictive model. The model fairly predicted experimental data obtained at various inlet conditions. Keywords: Phase change material, thermal storage, numerical model, simulation.Download Full Article |
Abstract : Mathematical Modelling of Portable Solar Water Distillation System
|
|
|
Abstract: Portable Solar Water Distillation (PSWD) system can provide drinking water and hot water simultaneously to households. It utilizes solar radiation to heat the water and produce fresh water out of the saline or brackish water & also produce hot water. The paper focuses mainly on field performance of a new design of PSWD for domestic applications in remote and hilly areas. Field Performance data of PSWD system has been recorded during summer and winter in northern region. It is observed that on Solar Global Radiation 2.3 kWh/ 0.25 m2, maximum output of distilled water generation of 1.2 liters/day per 0.25 m2 was achieved and average temperature of hot brackish water has reached 420C at ambient temperature of 230C within 8 hours. This system is the most efficient and cost effective. It can produce pure, clean fresh water along with hot brackish water from any water source. Keywords: Solar energy, mathematical modelling of PSWD system, hot brackish water.Download Full Article |
Abstract : Numerical Modeling, Simulation and Validation of Hybrid Solar Photovoltaic, Wind Turbine and Fuel Cell Power System
|
|
|
Abstract: The energy conversion equations describing the total power generated by a hybrid system of solar photovoltaic, wind turbine, fuel cell as well as hydrogen storage were presented, and integrated simultaneously. For the purpose of validating, this simulation model, the aforementioned equations were coded with MATLAB V13.2 and used for optimization and design purposes. A block diagram approach was used during the simulation with MATLAB. In order to validate and tune up the predicted output results, on-site data was used to validate the simulation program under various conditions. Comparison between the data and predicted results showed a fair agreement. Keywords: Modeling, Simulation, Hybrid System, Photovoltaic, Wind turbine, Fuel Cell, Hydrogen Storage, Experimental Validation.Download Full Article |
Abstract : Simulative Comparison between Electric and Thermal Powertrains on Different Real Road Missions
|
|
|
Abstract: Pure electric mobility is still struggling to emerge in the present road vehicles scenario. This is mostly due to costs, nowadays still very high, and to battery range, which is intrinsically very limited with respect to the fuel tank of a traditional vehicle. To be effectively competitive, e-mobility should not be thought as the mere substitution of the thermal powertrain with the electric one on the same vehicle; instead, a holistic approach comprehensive of the integration of a charging network within the territory should be adopted. The vehicles should be tailored on the missions to be accomplished promoting the lightness, simplicity and low cost, and should be integrated within a charging infrastructure and a car-sharing system implemented in the reference territory. In this paper the authors aim at exposing their idea of e-mobility, justifying it by simulations carried out on three different vehicles (a Diesel-fuelled Renault Kangoo, an electric driven Renault Kangoo and an electric micro-vehicle Renault Twizy) and experimental data. The simulations were carried out with the help of a validated road vehicle model in different real road missions, namely a urban, an extra-urban and a mountain mission. Keywords: Electric mobility, simulation model, comparative assessment, Matlab-Simulink, carbon dioxide Reduction, car sharing.Download Full Article |
Abstract : Solar Updraft Power Technology: Fighting Global Warming and Rising Energy Costs
|
|
|
Abstract: Solar updraft power technology (SUPT) forms a highly innovative, modern and efficient concept for solar-based electricity generation. Solar updraft power plants (SUPPs) are fueled purely by solar irradiation. They require no water for power generation, so their ideal locations are deserts. A SUPP consists of the glass-covered collector area (CA), in its centre the solar chimney (SC), and around the SC’s perimeter the power conversion units (PCU). This arrangement causes a permanent flow of warm air through the SUPP, producing electricity. The paper describes computer simulation concepts to evaluate the power/energy harvest in such plants, based on fluid-thermodynamics and radiation-physics. The nonlinear numerical processes for the SUPPs’ power harvests are solved by fast computer algorithms. Finally, the high economy of SUPT for world-wide arid zones in terms of leveled electricity costs (LECs) is exemplified by several optimized SUPPs. Keywords: Solar updraft power technology, multi-physics computer simulation, thermo-fluiddynamics, low-concentrated solar power, cost-efficient electricity.Download Full Article |



