journal-basic-applied-scien

Effects of Fe-Doping on the Structural and Magnetic Properties of Indium Oxide Nanoparticles Synthesized by Bottom up Technique
Pages
370-374Creative Commons License

M. Naeem, K. Kamran, S. Qaseem, S. Rizwan Ali and S. Imran Ali

DOI: https://doi.org/10.6000/1927-5129.2017.13.61

Published: 21 June 2017

Abstract: We study Fe doped In2O3 nanoparticles (NPs) from structural and magnetic point of view. X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal cubic bixbyite structure for both pure and Fe doped samples thereby confirming successful incorporation of Fe in host In2O3 lattice. Average crystallite size of pure and Fe doped (5% and 10%) In2O3 as calculated by Scherer’s formula shows slight increase from 21 nm for pure to 27 nm for the sample with 10% Fe content. The Williamson Hall (WH) method was also utilized to further determine crystallite size and Fe induced strain in In2O3 lattice. The crystallite sizes by WH plot are found to be 18 nm (for undoped), 22 nm (for 5% Fe) and 24 nm (for 10% Fe). These values are in good agreement with TEM results. Energy dispersive x-ray spectroscopy (EDX) indicates the existence of some oxygen vacancies in Fe doped In2O3 samples. Magnetic measurements show that all Fe doped In2O3 NPs exhibit typical ferromagnetic hysteresis loop with saturation magnetization Ms increasing with increasing Fe concentration. Temperature dependence of field cooled (FC) and zero field cooled (ZFC) magnetizations show no divergence and transition from ferromagnetism to paramagnetism in the temperature range of 5 to 300 K. This evidences a robust room-temperature-ferromagnetism (RTFM) in these NPs. The RTFM of our samples is attributed to the presence of oxygen vacancies in our samples.

Keywords: DMS, nanoparticles, defect states, magnetic property, X-ray diffraction.

Download Full Article

Submit to FacebookSubmit to TwitterSubmit to LinkedIn